Taking the Long View

September 11, 2012

In exploring how embryos take shape, John Wallingford has identified a key pathway involved in vertebrate development – and human disease

John Wallingford admits he’s a bit of a Luddite. “I don’t like a lot of technology,” he says. “If I could put a record player in my car, I would.” And though he makes his living using cutting-edge microscopic techniques to watch developmental events unfold in real time, it’s the simple experiments that have brought Wallingford the most joy. “I love old-school, cut-and-paste embryology,” he says.

As a postdoctoral fellow in Richard Harland’s lab at the University of California, Berkeley, around the turn of the millennium, Wallingford was exploring the role that Dishevelled – a signaling protein that regulates a variety of developmental processes – plays in the elongation of the embryo. Starting with a frog embryo that lacked Dishevelled, Wallingford carefully excised a tiny piece of tissue from the neural plate – the structure that gives rise to the brain and spinal cord – then grafted that tissue into the same position on the back of a normal embryo.

Read full article:

Taking the Long View

The Scientist/September 1, 2012

<br>
John B. Wallingford, HHMI Early Career Scientist, Associate Professor in Molecular Cell & Developmental Biology, University of Texas at Austin

Comments

Help us to improve the Leica Science Lab and participate in our survey! Start Survey

Arrow Down

Arrow Up