Contact & Support
Header Image

Photomanipulation

The term photomanipulation encompasses a range of techniques that utilize the properties of fluorescent molecules to initiate events and observe how dynamic complexes behave over time in living cells.

Whether bleaching, activating, converting, ablating or combining techniques, researchers need to have a system fully capable of performing and capturing events in high resolution.

Simply get in touch!

Want to know more on our solutions for Photomanipulation?

Leica Photomanipulation Products 5

Filter by Area of Application
THUNDER Imager 3D Live Cell & 3D Cell Culture

THUNDER Imager 3D Live Cell & 3D Cell Culture

THUNDER Imagers provide you with a solution for advanced 3D cell culture assays, whether you want to study stem cells, spheroids, or organoids.

LAS X Life Science

LAS X Life Science

Software platform for life science applications

Infinity Scanner

Infinity Scanner

Multispectral Photomanipulation Module

Infinity TIRF

Infinity TIRF

Multicolor advanced TIRF module

Fluorescence Recovery After Photobleaching (FRAP)

Fluorescence Recovery After Photobleaching (FRAP) experiments require fast yet gentle and accurate bleaching of specific regions of interest (ROIs).

FRAP experiments typically are used in biological studies of cellular kinetics, such as membrane diffusion and protein binding.

Leica offers two solutions for FRAP experiments with the DMi8 inverted microscope

  • The WF FRAP module is a budget-friendly entry level FRAP all-in-one device.
  • For more advanced applications, use the Infinity Scanner module to perform multi-ROI high-speed photobleaching experiments.

Activating

Utilize the latest advances in photoswitchable fluorescent proteins.

By selectively activating regions of your cells, you can precisely follow how specific molecules behave in cells over time.

The Infinity Scanner gives you full flexibility to choose the wavelength, size, and shape of your activation regions.

Full integration into LAS X microscope software

With full integration into LAS X software, you can design and perform photoactivation experiments with the ease of a fully integrated system.

Cutting/Ablation

Perform laser ablation experiments by adding the Pulsed Laser Unit to the Infinity Scanner.

Ablation experiments require high power, precise cuts to specific structures, such as microtubules, or regions of cells in order to gain insights into structural and developmental processes.

Optogenetics

Using light to stimulate  conformational changes to proteins, optogenetic techniques offer researchers the ability to control specific changes in living cells and tissues. The versatile Infinity Scanner offers user the ability to perform optogenetics experiments, and to combine with additional photomanipulation techniques into one experiment. 

Photomanipulation with DMi8 S: Flexible live cell imaging

The Leica DMi8 S microscopy system lets you easily combine applications by adding 1 or more advanced fluorescence imaging modules, such as the Infinity Scanner and Infinity TIRF. Get unprecedented flexibility allowing you to expose your sample to multiple techniques simultaneously, giving you deeper insights into your cells.

The Infinity Scanner enables a host of photomanipulation techniques, like FRAP, FLIP, photo activation as well as photo switching, optogenetics and ablation. Advance your research by combining several photo manipulation modes in one experiment, e.g. apply photo damage to the nucleus to induce DNA damage. Then use photo switching to identify and track when repair proteins are released from the DNA. Setting up and running experiments is straightforward, allowing you to see the hidden to advance your discoveries.

The Leica DMi8 S offers near infinite possibilities to adapt and expand with your research and enable your discoveries today and tomorrow.

News

18. April 2019 Image Gallery: THUNDER Imager

To help you answer important scientific questions, THUNDER Imagers eliminate the out-of-focus blur that clouds the view of thick samples when using…

06. March 2019 THUNDER Technology Note

So far, widefield microscopy was not suitable to image larger volumes, since the contrast of the recorded fluorescence image is reduced by the…

14. February 2018 Acute Transcriptional Up-regulation Specific to Osteoblasts/Osteoclasts in Medaka Fish Immediately after Exposure to Microgravity

Bone loss is a serious problem in spaceflight; however, the initial action of microgravity has not been identified. To examine this action, we…

15. November 2017 The Fundamentals and History of Fluorescence and Quantum Dots

At some point in your research and science career, you will no doubt come across fluorescence microscopy. This ubiquitous technique has transformed…

27. July 2017 Real Time Observation of Neutrophil White Blood Cell Recruitment to Bacterial Infection In Vivo

The zebrafish (Danio rerio) is an emerging vertebrate model organism to study infection. The transparent larva comprises a fully functional innate…

19. May 2017 Five Questions Asked: Prof. Dr. Jacco van Rheenen speaks about the most important considerations when imaging deep into mouse tissue

When operating a confocal microscope, or when discussing features and parameters of such a device, we inescapably mention the pinhole and its…

15. May 2017 What is Photomanipulation?

The term photomanipulation describes a wide range of techniques that enable the microscopist the transition from passive observer to instigator of…

04. May 2017 Photoactivatable, photoconvertible, and photoswitchable Fluorescent Proteins

Fluorescent proteins (FPs) such as GFP, YFP or DsRed are powerful tools to visualize cellular components in living cells. Nevertheless, there are…

27. March 2017 Work Efficiently in Developmental Biology and Medical Research with Stereo Microscopy: Rodent and Small Animal Surgery

This report provides information which can help improve the routine work of scientists and technicians performing studies involving surgery on small…

06. March 2017 Milestones in Incident Light Fluorescence Microscopy

Since the middle of the last century, fluorescence microscopy developed into a bio scientific tool with one of the biggest impacts on our…