From Eye to Insight

Webinar Basics in Component Cleanliness Analysis Dr. Nicol Ecke

- Why component cleanliness is important
- Fields of application, requirements and standards
- Critical dimension and measurement parameters
- Attain objective, accurate and reproducible results (VDA19 standard analysis)
- Workflow based solution Leica & Pall
- Dedicated solutions fitting to each need

Why is component cleanliness of importance?

Technical component cleanliness has its **origins** in the **automotive and car manufacturer industry**. The cleanliness of the components has an influence on the quality, functionality, and longevity of these automobile systems.

- 1. In the worst case, particular contamination may be the reason for a system failure.
- 2. All suppliers have to prove the cleanliness of their components.

Cleaning & extraction – An essential part of the process

- Components are cleaned <u>during</u> or <u>after</u> production
 - Fat De la constantia de

Washing cabinet/Cleaning process

- Particles have to be extracted from the components, e.g. in cleanliness cabinets
- The cleaning fluid is poured through a filter
 - The filter is dried in an oven.

Analyse filter

Particles on the filter can be analysed with an optical device

After preparation the filter is mounted on the microscope for inspection

Automatic analysis: Scan-analyze-inspectdocument

Easy, reliable, reproducible software solution

Analysis systems for component cleanliness

DMS1000 system solution

- Measurement & Documentation
- Coded zoom optics
- VDA19 Standard Analysis: 50 µm
- Daily analysis of particles above 30 µm
- ISO16232, USP788,... user defined
- 2D analysis

DM4/6 system solutions

- Measurement & Documentation
- Fully automated & coded microscope (fixed optics)
- VDA19 Standard & Extended Analysis
- Daily analysis of particles above 5 µm
- 3D analysis (length, breadth, height)
- Oil analysis (ISO4406, DIN51455)
- ISO16232, USP788,... user defined

The Cleaning procedure – Sample preparation an essential part of the process

 Filter preparation for automated image analysis system has to fulfill some criteria to count, measure and quantify particles.

What is similar for all these products?

At these conditions they can't be counted. ...and certainly not measured! The Cleaning procedure – Sample preparation an essential part of the process

They must be separated!

The Cleaning procedure – Sample preparation an essential part of the process

- Reliable and reproducible counting of particles on these filters is very problematic!
- Particles must be distributed separately onto the filter by adjusting the filtration process properly before they can be counted!

A suitable filter membrane must be selected!

- Why component cleanliness is important
- Fields of application, requirements and standards
- Critical dimension and measurement parameters
- Attain objective, accurate and reproducible results (VDA19 standard analysis)
- Workflow based solution Leica & Pall
- Dedicated solutions fitting to each need

Fields of application (beside automotive)

Aviation

Hydraulic fluid and oil

Wheel calinder

- Electronics
- Optics

Micro mechanic

Medical devices

Requirements and Agreements

Parameters		 What should be measured? (length, breadth, height,)? What is useful for my product? Which parameter should be used for classification? Differentiation of reflective and non reflective particles? Hardness of materials (Shore hardness). Is that feasible? Differentiation of particles and fibres?
Size of particles and classes		 From which size up particles should analysed? What is meaningful for my product? Which class limits should be used? Do we follow a standard, e.g. VDA19 or ISO16232?
Control and documentation of the results	•••••	Re-localisation and control of particles?Clean-up and editing of particles?

Documentation of settings, results, images, Diagrams,...?

Agreements

Standards

VDA 19 (2004) & ISO 16232:

- Not related to daily work
- Not enough parameters
- Not precise enough
- More pictures, figures, examples
- Bad comparability between analysis systems and users

Revision of the VDA 19 (2015) & ISO 16232:

- More related to daily work
- Comparability between analysis systems and users
- ,cooking recipe' for analysis
- Standard analysis with fixed parameters, size of particles, classes, length, breadth, image settings, threshold, fibre criteria
- **Extended analysis**: e.g. height measurement of particles, characterisation of the material of particles

Many Standards Have Been Developed for Specific Applications

Standard	Application	Support Level
ISO 16232	Automotive	Direct Support
VDA 19	Automotive	Excel Template
ISO 4406/4407 DIN 51455	Hydraulic Fluids Oil	Excel Template Excel Template
NAS 1638	Lubrication	Excel Template
SAE 4059	Hydraulic Fluids	Excel Template
USP-788	Pharmaceutical	Excel Template
NF E48-655	Hydraulic Fluids	Excel Template
User Defined	Any	Direct Support

- Why component cleanliness is important
- Fields of application, requirements and standards
- Critical dimension and measurement parameters
- Attain objective, accurate and reproducible results (VDA19 standard analysis)
- Workflow based solution Leica & Pall
- Dedicated solutions fitting to each need

Size of particles

Length of particle have to be build up by 10 pixels

Size of 1 pixel = calibration value of the system, e.g. 5μ m/pixel

Important: calibration value have to be in reasonable context to **optical resolution**

Size of particles

Length of particle have to be build up by 10 pixels

Size of 1 pixel = calibration value of the system, e.g. 5μ m/pixel

Important:

calibration value have to be in reasonable context to optical resolution

Detection

Detection of particles:

Greyscale image

Binary image:

- Everthing below threshold in <u>RED</u> = will be measured
- Evrything above threshold will not be measured

Measurement parameters

Size, length, breadth, boundary, shape, etc.

Feret measurement: Distance between two parallel lines touching the object (caliper)

Precision: 64 different angularities

Feret lenght and breadth: max. and min. Feret distance of a feature, respectively

The critical dimension...

20

Damage potential

Critical dimension: length

Critical dimension: length

Length of the particle is the standard dimension for the classification.

- Length = longest ferret
- Maximum damage potential of a particle
- This is true for compact particles

Long particles will be orientated parallel to the **flow direction**.

➔ Is the particle length still the critical dimension?

Damage potential

Critical dimension: breadth

Identification of Risky Particles

Critical dimension: breadth

Size: Only length (Feret _{max}) doesn't characterize the full damage potential.

- Breadth is a critical dimensions for particles adjusted in a flow direction.
- Injection pumps, pistons, spools
- Regarding the breadth the Feret min reflects the maximum potential damage
- → Does the Feret min reflects a damage potential of curved particles or fibres?

Identification of Risky Particles

Breadth

Minimum feret and maximum inner circle diameter - Which on is better?

Damage potential

Critical dimension: height

Identification of Risky Particles

- Thin and large particles can be less dangerous than small but round particles.
- The 3D shape determines also the risk potential of the contamination.

2D information is not sufficient to estimate the risk potential of the contamination!

2D & 3D measurements

2D Measurement: 2.5x/5x/10x lenses with high depth of field

Length (µm)	Area (µm²)	Breadth (µm)			
483.03	5903.27	24.09			
191.23	14397.53	121.92			

- Height measurement: 20x lens with low depth of field
 - 1. Focus on filter background

2. Focus on the top of the particles

Length, Width and Height: Damage potential in 3 dimensions!

Nature of particles

Damage potential: hard and conductive particles

- Hard particles have higher damage potential, e.g. metallic particles, grinding material (corundum, carbide)
- Metall particles are conductive ⇒ damage of electronics, electronic boards
- Reflexes on particles are an indicator for metals
- Automatic differentiation of metallic and non-metallic glance in one scan

Differentiation particles and fibres

- Fibres are soft and have low damage potential
- Separation of particles and fibres (length/breadth ratio)

 $\begin{array}{l} \mbox{Feretlength} \ 1270 \ \mbox{μm$} \\ \mbox{Fibre length} \ 2460 \ \mbox{μm$} \\ \end{array}$

Particle POL Modus

Metall. particle brightfield: reflexes

Fibre length (Feret) POL Modus

Topics

- Why component cleanliness is important
- Fields of application, requirements and standards
- Critical dimension and measurement parameters
- Attain objective, accurate and reproducible results (VDA19 standard analysis)
- Workflow based solution Leica & Pall
- Dedicated solutions fitting to each need

Image settings

- Gamma, dynamic range, resolution
 - ✓ Clear definition, e.g. Gamma 1, complete dynamic range
- Setup of image brightness (lamp voltage, exposure time)

✓ Histogramm Maximum, e.g. 50 – 60 %

Comparable images

User influence detecting an image

Is that objective? Is there a recipe for a good detection?

Threshold 91 53 μm cluster grey (class E)

Cluster black 191 µm (class G)

Threshold 106 280 µm cluster grey (class H)

Cluster black 218 µm (class H) Cluster black 236 µm (class H)

- Different results for particle size, especially in clusters
- Different classification in VDA classes (50 μm, 100 μm, 150 μm, 200 μm, 400 μm)

Threshold 122 410 μm cluster grey (class I)

What is a relative threshold?

- A relative threshold has clear definition
- The relative threshold is connected to the maximum of the histogram
- e.g. 70% of the histogram maximum

VDA 19: Abb. 8-4: Einstellung von Bildhelligkeit und Binarisierungsschwelle bei Lichtmikroskopen mit Polarisatoren

Clear definition:

Due to the relative threshold there is no user influence

Relative threshold

ISO 16232 Classes		0
Size Class	Size Limits (µm)	
В	5 - 15	
C	15 - 25	
D	25 - 50	
E	50 - 100	
F	100 - 150	
G	150 - 200	
н	200 - 400	

Klasse	Länge (µm)
Н	218
Н	280

VDA 19 guideline for component cleanliness -Standard analysis

Size of particles 💥 above 50 μm, 10 PIXELCRITERIA Contrast method microscope 💥 CROSSED POLARIZERS Parameter image setup HISTOGRAM MAXIMUM 50-60% **Detection of particles** RELATIVE THRESHOLD 70% Measurement parameter (length, breadth, fibre length & : breadth) FERETmax, FERETmin, MAX. INNER CIRCLE DIAMETER E Definition of particles and fibres ELONGATED FIBRELENGTH/MAX. INNER CIRCLE DIAMETER

Topics

- Why component cleanliness is important
- Fields of application, requirements and standards
- Critical dimension and measurement parameters
- Attain objective, accurate and reproducible results (VDA19 standard analysis)
- Workflow based solution Leica & Pall
- Dedicated solutions fitting to each need

Workflow technical cleanliness analysis

PALL Pall Corporation

1. Cleaning, extraction, filtration...

3. Distribution of particles:

4. Relocation...

2. Analysis of the membrane...

Workflow technical cleanliness analysis DMS1000

21

136,05

135,14

130,90

1993,91

3608,64

3362,40

36,64

83,49

70.11

9241

3861

9179

Identification: 6. 7. Evaluation: Metallic glance Particle metallic: hard Length: 210 µm o.k. Width: 95 µm n. o.k. Height: 60 µm n. o.k. Damage potential: high Source of contamination: residues of a tool 5. Properties: Length: 210 µm Ζ Width: 95 µm Height: 60 µm Relocation: 4. Fläche (µm2) Breite (um) Entfernen Faser Länge (um) 4181,76 203 54 67,83 146,13 6193 4 4290,71 68,21

Workflow for component cleanliness with DMS1000

Leica

Entry level solution

The digital microscope solution with smartly integrated high quality optics

Recommended for daily analysis of particles **above 30 \mum** or **VDA 19 Standard Analysis** (above 50 μ m)

- **High quality coded zoom** optics for safe and reliable results. Automatic readout of zoom position = no wrong calibration
- Macroscopic beam path for exact 2D measurement = no parallax error (vs. stereo mic.)
- Flex Aperture = constant brightness throughout all Zoom positions
- **Safe and reliable results:** All changes during or after the analysis are documented in the report, e.g. camera settings, threshold, deletion of particles, editing of particles = highest traceability of results

Open and upgradeable solution

• Open platform for documentation, measurement and <u>analysis.</u> Easy, intuitive microscope software to capture pictures.

Workflow for component cleanliness with DM6

Advanced system solutions

Extraction, Filtration	Detection	n, counting, sifying	Relocate & Check		Ð	react	
Res	T				Max.	Ist	
	- Cor			Iength [µm]	250	225	1. 0.
			37.2	width [µm]	150	134	i. O.
The Party Pa	and the second sec	The Condition of the	1	height [µm]	100	115	n. i. O.
· 19 8	H AND		Refl./ Non-refl.	reflective		ve	
			potential of damage		<u>je</u>	high	
			source	metallic tool		c tool	
VDA 16232 150 16232			VDA 19 0 ISO 16232				

The digital microscope system DM6

Recommended for standard and advanced analysis including daily analysis of particles $above \; 5 \; \mu m$

- Fully automated microscope system enables fast and reliable results = no wrong settings and measurements
- Highest optical performance: measuring small and big particles in one step
- 3D measurement capabilities to identify the damage potential of particles
- Safe and reliable results: All changes during or after the analysis are documented in the report, e.g. camera & microscope settings, threshold, deletion of particles, editing of particles = highest traceability of results
- **Open and upgradable solution:** Metallography, 2D & 3D analysis, mosaic images, image analysis, documentation.... ...and coming soon material analysis

Leica Solution

ACCURATE AND REPRODUCIBLE Counting of Particles

This was the first Webinar in our trilogy Component Cleanliness.

If you are interested in sample & filter preparation and workflow solution we suggest our joined Pall-Leica Webinar

Don't miss the date of our third Webinar where we will present exciting news for advanced particle analysis

Thank You for Your Attention! Any Questions?