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Introduction

Historically, widefield microscopy has not been best suited for the

imaging of large sample/specimen volumes. The image background (BG),

mainly originating from out-of-focus regions of the observed sample,
significantly reduces the contrast, the effective dynamic range, and the
maximal possible signal-to-noise ratio (SNR) of the imaging system. The
recorded images show a typical haze and, in many cases, do not provide
the level of detail required for further analysis. Those working with thick
3D samples either use alternative microscopy methods or can try to
reduce the haze by post-processing a series of images.

Methods to reduce or remove background (BG) signal
Depending on the way in which the BG caused by a out-of-focus-signal
is handled, we distinguish between exclusive and inclusive methods.

Inclusive methods, such as widefield (WF) deconvolution microscopy,
take the distribution of light in the whole volume into account and
reassign recorded photons from the BG to their origins, thereby
increasing the SNR of the recorded volumes. This reassignment can be
done, because the distribution of light originating from a single point is
described by the Point Spread Function (PSF).

Inclusive methods reach their limits as more and more light from
out-of-focus layers is combined with the light from the in-focus-region.
Effects which distort the PSF, such as light scattering, increase the BG,

making restoration with inclusive methods more difficult. Unfortunately,

scattering is unavoidable in biological specimens. Because inclusive
methods, according to their definition, use all signals detected in the
image, they also process signal components from out-of-focus layers
that should not contribute to the final result.

Exclusive methods are based on the principle of separating out the
unwanted BG and subtracting it from the image, so only the signal from
the in-focus layer remains. Camera-based systems utilize hardware

to prevent the acquisition of out-of-focus light (e.g. spinning disk
systems or selective plane illumination) or a combination of software
and hardware to remove BG components (grid projecting systems).

Grid projecting systems need multiple images to be acquired, which
can lead to mation artefacts when recording fast moving samples. In
addition, they work only up to a limited depth, as a sharp image of the
grid needs to be detected by the camera.
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The gold standard in removing out-of-focus BG are pinhole-based
scanning systems. The pinhole of a confocal system excludes light from
out-of-focus layers, so only light from the in-focus layer reaches the
detector.

THUNDER Imagers use Computational Clearing as exclusive method
to remove the BG with a single recorded image in real time. It
therefore overcomes the disadvantages when imaging life samples as
mentioned above.

Computational Clearing (CC)

Computational Clearing is the core technology in THUNDER Imagers. It
detects and removes the out-of-focus BG for each image, making the
signal of interest directly accessible. At the same time, in the in-focus
area, edges, and intensity of the specimen features remain.

When recording an image with a camera-based fluorescence
microscope the “unwanted” BG adds to the “wanted” signal of the
in-focus structures and both is always recorded. For best results, the
aim is to reduce the BG as much as possible. To exclude unwanted BG
from an image, it is critical to find key criteria necessary to accurately
separate the BG from the wanted signal. Generally, BG shows a
characteristic behavior in recorded images which is independent

of its origin. Hence, just from its appearance in an image, it is not
discernable where the BG comes from.

Specifically in biological samples, the BG is usually not constant. It
is quite variable over the field of view (FOV). Computational Clearing
takes this automatically into account to make the in-focus signal
immediately accessible.
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Figure 1: lllustration of the in-focus and out-of-focus PSF: The PSF of widefield images (center) can be described by the two PSF components which are in-focus (left) and
out-of-focus (right). The background estimation takes advantage of the fact that the structural length scale, S[A[UH[I, of the out-of-focus signal is larger than the corre-

sponding structural length scale, 17, as given by the width of the in-focus signal.

How to separate out of focus from in focus signal?

Images acquired with a widefield microscope can be decomposed into two

components: in-focus and BG signals. BG is mainly arising from out-of-
focus signals. Thus, a widefield image, I(r), can approximately be given by:

[(@)~psfor () * f(r) + psfir(r) * f(r) (M

Where psforsir (1) and f(r) are the effective point spread functions of
the in-focus (if) and out-of-focus (of) contributions and the fluorophore
distribution, respectively. Because the out-of-focus PSF is much wider
than the in-focus one, these two contributions in Eq. (1) can be clearly
separated by length-scale-discriminating algorithms, such as, wavelet
transforms. We developed an iterative algorithm to separate these two
contributions. It calculates the following minimization for each iteration:

. ~ 2 .
Loyt = argminy . [l = Iouell'] subjectto Srlout] > T (2)

Here S[1,,.] represents the structural length scale of the estimated
out of focus contribution I,,,,;. The structural length scale 7y Eq. (2) is
calculated based on the optical parameters of the system and can be
adapted. In the LAS X software, it is called “feature” scale.

Using this approach, only the BG is removed. Both the signal and the
noise from the in-focus sample area of interest are kept. Because the
noise from the in-focus area remains, the edges of in-focus features
in the images are visible, therefore maintaining the spatial relations
between the sample features with respect to their feature scale. The
relative intensities of the features are still conserved, despite the
varying nature of BG typical in life science samples.

Unlike traditional inclusive methods, the image that is revealed using
Computational Clearing is not generated, but just “unmasked” from the
background signals in the sample.

Figure 2: Beta Ill Tubulin Rat Neuronal Cells labeled with Cy5 showing the edges of structures, which are preserved after Computational Clearing,
and the resulting background. Images were acquired with a THUNDER Imager 3D Cell Culture and an HC PLAPO 63x/1.40 OIL objective.
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Information extraction: Adding Adaptive Deconvolution

Computational Clearing removes the BG, clearly revealing focal planes
deep in the sample. Computational Clearing, as an exclusive method,
actually becomes even more powerful when used in combination with
an inclusive method.

THUNDER Imagers offer three modes to choose from:
> Instant Computational Clearing (ICC),

> Small Volume Computational Clearing (SVCC) and
> Large Volume Computational Clearing (LVCC).

Instant Computational Clearing (ICC) is a synonym of the exclusive
Computational Clearing method as it was first introduced at the
beginning of this technology note. SVCC and LVCC are combinations

of exclusive Computational Clearing and an inclusive decision-mask-
based 3D deconvolution dedicated to either thin samples (SVCC) or

thick samples (LVCC). The adaptive image information extraction of the
inclusive methods follows a concept that evolved from LIGHTNING, Leica
Microsystem's adaptive deconvolution method, originally developed for
confocal microscopy.

LIGHTNING uses a decision mask as a base reference to calculate

an appropriate set of parameters for each voxel of an image. In
combination with a widefield PSF, the functionality inherent to
LIGHTNING of a fully automated adaptive deconvolution process can be
transferred to widefield detection.

More detailed information about adaptive image information extraction
and deconvolution can be found in J. Reymann’s White Paper:
LIGHTNING — Image Information Extraction by Adaptive Deconvolution.

Experimental evidence

In this section, experimental data is shown to demonstrate:

> How the data generated with THUNDER Imagers is quantifiable;

> How Computational Clearing allows imaging deeper within a sample;

> The improvement in image resolution attained with THUNDER Imagers.

Is computationally cleared data quantifiable?

Quantifying Widefield Data with Computational Clearing |

InSpeck beads are microsphere standards that generate a series of well-
defined fluorescent intensity levels for constructing calibration curves and
evaluating sample brightness. In this short experiment, an equal volume
of same-size fluorescent and non-fluorescent beads were mixed together.
The fluorescent beads had different relative intensities, i.e., 100%, 35%,
14%, 3.7%, 1%, and 0.3%.

InSpeck beads were deposited onto a cover slip and 156 positions were
imaged using a 20x low NA objective (Figure 3, single z-position). Three
channels were recorded (Figure 3 from left to right): bright field (BF),
phase contrast (PH) and fluorescence (FLUO). The FLUO intensity was
adjusted to avoid saturation of the camera sensor from bright objects. To
correct for potential inhomogeneous illumination, the central area of the
FOV was used. No further flat-field correction was performed. The FLUO
images were post-processed with Instant Computational Clearing (ICC)
using a feature scale of 2500 nm which corresponds to the bead size.

Figure 3:InSpeck beads seenin a single field of view. The phase contrastimage was used to find beads by thresholding. Scalebar: 20 pm.


https://www.leica-microsystems.com/science-lab/how-to-extract-image-information-by-adaptive-deconvolution/
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Figure 4: Histogram showing the relative fluorescence intensity distribution for the same features seen in both the raw (left) and ICC-processed image data (right). The black lines
indicate the relative intensities of the underlying bead population. Computational-cleared data scale setto a max of 1,000 counts: 3,620 counts are in the first bin (zero to 0.1%)

representing the non-fluorescent beads.

Beads were found by simple thresholding of a PH image. To correct
for falsely detected beads, only round objects (> 0.99 roundness) of a
certain size (68 to 76 pixels) were accepted. This mask was used to
get the mean intensities of the raw fluorescent and the ICC processed
channels. There was no exclusion of intensity outliers. To get relative
values, the raw and processed intensities of all accepted beads were
divided by the median intensity of their largest intensity population
(usually the 100% relative-intensity fluorescent beads).

In figure 4 (right), the black lines show that, following Computational
Clearing, the intensities still appear around the expected values.

Conclusion: Computational Clearing allows the true fluorescent
dynamics of the beads to be distinguished, even for the weakest-signal
population which is not observable in the raw data. Quantification of
emission intensities is easily done when using Computational Clearing.
However, for such kinds of experiments, good practices for quantitative
fluorescence microscopy need to be followed very closely.

Quantifying Widefield Data with Computational Clearing I

The following experiment shows how ICC deals with massive
differences and heterogeneity in BG. A green-fluorescent-bead
population of varying intensities was prepared and dispersed onto a
cover slip. The beads appeared with mixed intensity, but in clusters
(Figure 6, left). A general BG was provided by removing the excitation
filter from the filter cube and adding a fluorescein BG to one half of the
cover slip by marking it with a marker pen. Two equally sized regions of
non-overlapping FOVs were defined: one in the area with fluorescein,
the high BG tile scan (Figure 5: Region A, left), and the other in the area
without it, the low BG tile scan (Figure 5: Region B, right).

Figure 5: Merged image of two non-overlapping tile scans (each 187 FOVs with 250 x 250 pm). Left) a tile scan in a high and inhomogeneous BG region (Region A).

Right) tile scanin a low BG region (Region B).



For each FQV, the beads were identified by simple thresholding of
the BF image (Figure 6, left). From this mask, the mean fluorescent

THUNDER IMAGER TECHNICAL NOTE

intensities of the raw and ICC-processed images were obtained.

Figure 6: Single FOVs of the BF channel (left), raw fluorescence image (center), and ICC processed image (right). The BF channel was used to segment the central area of the
beads. The segmented areas were used for analysis in the fluorescence channels. Scalebar: 20 pm. Raw image: scaling from 250,00 to 600,00 gray values. ICC image: scaling

from 0to 26,000 gray values.

Objects which did not show a certain roundness and size were
discarded and not used for further analysis. Other outlier corrections
were not applied. In total, 39,337 objects in region A (high and
inhomogeneous background) and 43,031 objects in region B (low

background) were identified. For subsequent comparisons of the
intensities, 39,337 objects were selected randomly from region A so
that the sample sizes of both regions matched.

Figure 7: Intensity distribution of objects seen in regions A (high BG, blue) and B (low BG, red). The left histogram shows raw data and the right ICC-processed data.

The intensity distribution of the objects in region A (high BG) and

B (low BG) are very distinctive (Kolgomorov Smirnov distance:
0.79+0.2, permutation resampling). The general offset and the
added BG can be seen (Figure 7, left blue). The same analysis of
data after Computational Clearing shows a very similar distribution
(KS: 0.05+0.02) for both regions.

Conclusion: Computational Clearing can deal with heterogeneous
BG signals which are inherent in the image data of real biological
specimens. In addition, it allows quantification of fluorescence signals
without the need of tedious local BG removal algorithms which usually

need to be adjusted for each imaging session (even for the same object).

Quantifying Widefield Data with Computational Clearing Il

To further show the linear behavior of ICC, images of stable fluorescing
objects (15 um beads) within a fixed FOV were recorded with increasing
exposure times. To exclude illumination-onset effects, the objects were
illuminated constantly with the excitation light. Due to the low density
of beads and flatness, background in raw images originated mostly
from the camera offset. ICC parameters were set according to the
object size: 15 pm with highest strength (100%).
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Figure 8: Raw images (top row) and images taken with Computational Clearing (bottom row) taken with different exposure times (columns) shown divided by the respective
exposure time. Green dots: objects for further analysis. Red square: region for traditional background subtraction. Scalebar: 100 ym.

Objects (n=107) were identified in the longest exposed (160 ms), intensity corresponding to the longest exposure time. Raw data shows
processed image (Figure 8, green dots). Objects consist of all pixels that the relative amount of BG decreases with increasing signal, which
within a 4-pixel distance around a local maximum with an intensity is correct, as the BG source is mainly the constant camera offset (Figure
greater than 20% of the maximum. Data is highly linear (Figure 9, left, 9, center blue). The processed data, however, displays a linear behavior

r>0.999 for all single object measurements). To visualize the respective (Figure 9, center red).
mean value, intensity was divided by the exposure time and the

Figure 9: Intensities of identified objects (Figure 8, green dots): left) raw ICC data, single measurements (gray) and average (red). Center) the normalized relative mean value (divided
by exposure time and the value at 160 ms exposure) for intensities of raw (blue) and images taken with Computational Clearing (red). The shadow represents the distribution of
single-objectvalues. Right) computationally cleared data plotted against traditional background-subtracted data where a line of perfect correlation has been added (red line).

Finally, ICC was compared to traditionally BG-subtracted data. This Conclusion: ICC shows a linear behavior. It enables data quantification
step is generally mandatory for quantification of intensities. The mean without the need of further image processing, which can be tedious,
intensity of an object-free area (100 x 100 pixels, as shown in Figure especially with heterogeneous backgrounds.

8, red square) was calculated for each image and subtracted from the
intensity data of the same image. Plotting the mean intensities of the
previously found objects versus traditionally BG-subtracted raw data
shows that ICC gives the same result (Figure 9, right).
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How deep can Thunder image within a sample?

The maximal depth that can be imaged is highly sample dependent.
Factors, such as density of fluorophores, absorption, or homogeneity of
local refractive indices within the sample, directly influence the SNR
and amount of scattered light per voxel. These factors usually fluctuate,
even within the same field of view.

The classical way to achieve optical sectioning of 3D samples on
camera-based systems is by using multiple-point illumination, such as
with a Nipkow disk or grid-projecting devices. The latter introduces
artifacts whenever the grid cannot be projected sharply in the focal
plane. Disk-based systems, on the other hand, have to deal with the

Figure 10: Volume rendering of a computationally cleared 150 pm brain section.

The better the contrast-to-noise ratio, the better the result of the
reconstruction will be. For the example shown in figure 10, Large
Volume Computational Clearing (LVCC), a combination of Computational
Clearing and adaptive deconvolution, was used to image a thick sample
volume. In the upper layers of the sample, even the finest details
are resolved and can be segmented. Although the resolution and

finite distance between pinholes which introduces light contamination
from out-of-focus planes at certain imaging depths.

With Computational Clearing, the maximal depth in a sufficiently
transparent sample mostly depends on the scattering of the emitted
light. Computational Clearing enables deep imaging by removing the
scattered light component. If at least some contrast in the image
can be achieved locally, THUNDER Imagers make it accessible. The
big advantage of Computational Clearing is that it works with live
specimens, so imaging can be done under physiological conditions.

segmentation might be reduced for deeper layers, imaging at a depth
of 140 to 150 pm in the sample (Figure 11) shows a significant amount
of valuable details which are not revealed in the raw data. Without
THUNDER, most widefield imaging experiments stop at a depth of

50 pm, as it is believed that no more information can be retrieved.
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Figure 11: Maximum intensity projections for depths of 140 to 150 ym.

Resolution improvement with Thunder

Applying Small Volume Computational Clearing (SVCC) to single, (100x, 1.45 NA objective) and SVCC with default settings applied. The
non-overlapping, diffraction-limited objects results in a resolution result is a resolution enhancement™ of 2 times laterally (ratio FWHMX
enhancement, as shown below in Figure 12. In the given example a SVCC/Raw = 0.51) and more than 2.5 times axially (ratio FWHMZ
single bead of 40 nm diameter was imaged SVCC/Raw =0.39).

*Resolution enhancement as defined as the apparent size of a point source emitting light.
Separating two structures close to each other below the refraction limit is not possible.

Figure 12: X axis (left) and Z axis (right) intensity measurements of a single bead with a size below the optical resolution limit: before (blue dots) and after SVCC (red dots)
and fitted Gaussian (shadows). The inserts show the respective XY and XZ planes.
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Summary

Computational Clearing, an exclusive method from Leica Microsystems,

efficiently differentiates and eliminates background from wanted signal.

It is the core technology of the THUNDER Imager family.

Different experiments with the appropriate samples gave evidence
that Computational Clearing allows quantitative analysis of widefield

Leica Microsystems CMS GmbH | Emst-Leitz-Strasse 17-37 | D-35578 Wetzlar (Germany)

Tel. +49 (0) 6441 29-0 | F +49 (0) 6441 29-2599

www.leica-microsystems.com/thunder

images. In combination with adaptive deconvolution, it allows the
resolution to be enhanced. THUNDER Imagers allow deeper imaging
in large volume samples, such as tissue, model organisms, or 3D
cell cultures. THUNDER Imagers are powerful imaging solutions that
maximize the information that is extracted from 3D samples.
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