Contact & Support
Header Image

Xingyun Qi

Research Associate at University of Washington, Department of Biology

  • Autocrine Regulation of Stomatal Differentiation Potential by EPF1 and ERECTA-LIKE1 Ligand-receptor Signaling

    Development of stomata, valves on the plant epidermis for optimal gas exchange and water control, is fine-tuned by multiple signaling peptides with unique, overlapping, or antagonistic activities. EPIDERMAL PATTERNING FACTOR1 (EPF1) is a founding member of the secreted peptide ligands enforcing stomatal patterning. Yet, its exact role remains unclear. Here, we report that EPF1 and its primary receptor ERECTA-LIKE1 (ERL1) target MUTE, a transcription factor specifying the proliferation-to-differentiation switch within the stomatal cell lineages.
    Read article