Contact & Support
Header Image
  • "Shallow Trench Isolation" Structures - Sample Preparation for TEM

    Application Note for Leica EM RES102 - The cross-sectional preparation of structured semiconductor materials requires a very thorough mechanical pre-preparation. In doing this, it must be ensured that the structure of interest should be located as close to the centre of the sample as possible. As the sample will be ion milled from both sides, a specific preparation of the structure is necessary in most cases, which means that you must thin these structures from both sides.
    Read article
  • Gene Editing with CRISPR/Cas9 - Breakthrough in Genome Engineering

    The CRISPR/Cas9 system is one of several different bacterial systems for defense against viral attacks. It consists of two main components. One is a small piece of RNA which binds to the viral target sequence via Watson-Crick base pairing. It serves as a marker for the foreign nucleic acid. The second component is the Cas9 protein. It binds to the marked sequence and cuts it due to its nuclease activity. Because the base pairing RNA can be synthesized easily and then used to determine a target region, researchers have utilized this system in the laboratory for genome editing.
    Read article
  • Paper Samples - Sample Preparation for SEM

    Application Note for Leica EM RES102 - A coated paper sample has been prepared with ion beam slope cutting in order to test the procedure with regard to its applicability. With the use of ion beam slope cutting a cross section of paper could be prepared. On the basis of this sample processing, it was possible to show the largely unaffected original structure of the thermally-sensitive paper in the scanning electron microscope.
    Read article
  • Metal Films and Sheets - Sample Preparation for TEM

    Application Note for Leica EM RES102 - Most metal films already have a thickness that requires no further mechanical pre-preparation. Frequently, however, they are also domed, which can lead to undefined milling angles. This is a disadvantage, particularly for films that contain inclusions, and that therefore mostly require very flat milling angles. Metal sheets are thicker than 100 µm. Mechanical pre-preparation is necessary to obtain an acceptable initial thickness and a good surface quality for ion milling.
    Read article
  • Webinar: Introduction to Correlative Light and Electron Microscopy (CLEM)

    The webinar will provide an overview of the latest advances in Cryo CLEM, which acts as a powerful interface by combining the best of the light and electron microscopy worlds to overcome their independent barriers and determine the location of fluorescent labelled structures within the landscape of an electron micrograph and showcase how Cryo CLEM adds additional value to quantitative 3D imaging and tomography.
    Read article
  • Cross-Sectional Preparation of Structured Semiconductor Materials for TEM

    Application Note for Leica EM RES102 - The vertical layer construction of a semiconductor structure should be examined as a TEM cross-sectional sample. In addition to the specific preparation of the desired structure, the widely different sputter rates and atomic weights of the individual components represent the level of difficulty involved with this preparation problem.
    Read article
  • Contrast Enhancement of Polished Cross Sections of Semiconductor Structures - Sample Preparation for SEM

    Application Note for Leica EM RES102 - The surfaces of polished cross sections often show fine scratches and residues of the removed material or of the abrasive material. The artefacts are strongly material-dependent, and are mostly only detectable at higher resolutions in the scanning electron microscope. A further problem arises from the fact that the ground section mostly only has low contrast, i.e., in the structures of the semiconductor materials are very difficult to discern. With the use of ion beam milling, the ground sections of semiconductor structures can be "contrasted".
    Read article
  • Work More Efficiently in Developmental Biology With Stereo Microscopy: Zebrafish, Medaka, and Xenopus

    Among the aquatic model organisms used in molecular and developmental biology the most prominent are the zebrafish (genus species: Danio rerio), medaka or japanese rice fish (genus species: Oryzias latipes), and african clawed frog (genus species: Xenopus laevis). This report gives useful information to scientists and technicians which can help improve their daily laboratory work by making the steps of transgenesis, fluorescent screening, and functional imaging more efficient.
    Read article
  • Practical Guide for Excellent GSDIM Super-Resolution Images

    Do you know that most protists and bacteria lack in one feature that each of our body cell has? Our cells are touch and communicate with one another. They send and receive a variety of signals that coordinate their behavior to act together as a functional multicellular organism. Exploring the way of cellular communication and the ways how the cell surface interacts to organize tissues and body structures is of great interest. Kees Jalink and his team of scientists at the Netherlands Cancer Institute (NKI) in Amsterdam obtained new scientific insights into the molecular architecture of hemidesmosomes, cytoskeletal components, cell surface receptors and vesicular proteins with the help of Ground-State-Depletion (GSD)/ dSTORM microscopy. In this interview, Kees Jalink comments on their developments in imaging chambers, buffer conditions and image analysis to get the perfect super resolution image.
    Read article
  • Surface Modification of ZnAg Sample - Sample Preparation for SEM

    Application Note for Leica EM RES102 - By means of cleaning, polishing and contrast enhancement a soft ZnAg sample should be prepared to obtain information concerning the grain structure and interfaces of the sample. The sample is contaminated after mechanical polishing. There are still some scratches on the surface. Grain structure is almost invisible.
    Read article
  • Cross Sectioning of Ni/Cu on Steel for EBSD

    Application Note for Leica EM TIC 3X - Electron Backscattered Diffraction (EBSD) is a surface technique creating a diffraction pattern (Kikuchi-bands). It can be used for crystal orientation mapping, defect studies, phase identification, grain boundary studies and morphology studies. The information depth is just a few nm. Therefore a good sample preparation is very important.
    Read article
  • Cross Sectioning of Painted Concrete

    Application Note for Leica EM TIC 3X - Ion beam slope cutting is a method that can achieve flat cuts of material combinations consisting of hard and soft materials. Here, cross sectioning of painted concrete is describes in order to visualize the interface between paint and concrete.
    Read article
  • Forensics: How to Gather Evidence from Ballistics, Tool Marks, Questioned Documents, Counterfeiting, and Forgery Fast and Easily with Digital Microscopy

    The examples reported here demonstrate how digital microscopy enables forensic scientists to gather and compare evidence from ballistics and tool marks or counterfeited money, credit cards, and documents, more efficiently. Images and videos clearly show how to use the digital microscope to perform forensics investigations and how you speed up your workflow with the help of practical features, such as a convenient way to change magnification rapidly over the full range, tilting, sample rotation, and versatile illumination.
    Read article
  • Thin Metal Foils with Coatings - Sample Preparation for SEM

    Application Note for Leica EM RES102 - Thin foils are mostly unstable because of their thickness of a few microns. This makes it difficult to do slope cutting without any protection of the sample. A common realisation to protect the sample surface is by sticking a cover glass on top of the sample. Another issue is cutting the foils before ion milling. The sample edge should be flat and sharp without any broken areas. A razor blade is mostly the best solution. A protected sample can salso be sawed with a wire saw.
    Read article
  • Webinar: Laser Microdissection in Cancer Research – Mutation Analysis Workflow with Pure Cancer Material

    Cancer can affect various organs and is caused by mutations of the DNA. A prerequisite, to explore and understand underlying gene-mutations involved in the development of a definite type of cancer, is the extraction of pure sample material, which is challenging. In this webinar, we will present how to extract 100% pure cancer tissue for DNA analysis with laser microdissection (LMD). Using tissue samples from human kidney cancer patients as an example, this webinar will provide an overview of the practical considerations when preparing a workflow to obtain highly pure material with the LMD microscope for further molecular analysis.
    Read article
  • Webinar: Introduction to Fluorescence Microscopy

    In this seminar we will provide an overview about the latest advances in fluorescence microscopy. You will learn how you can use widefield and confocal microscopes to help you understand life’s questions down to tiny details, at high speed and state-of-the-art image quality both in living and fixed samples.
    Read article
  • Work More Efficiently In Developmental Biology With Stereo Microscopy: Fruit Flies (Drosophila Melanogaster)

    For scientists and technicians working with fruit flies, most often genus Drosophila, this report is intended to give useful information to help improve daily laboratory work by making the steps of fly pushing, fluorescent screening, dissection, and documentation/imaging more efficient. It also details various possibilities for properly equipping or stocking a fly lab.
    Read article
  • Ultra-thin Carbon Support Films for Improved STEM-EELS Analysis of Nanoparticles

    Application Note for Leica EM ACE600 - Recent developments in aberration corrected transmission electron microscopes as well as further improvements in monochromaters and spectrometers have pushed the attainable energy resolution for Electron energy loss spectroscopy (EELS) to 100 meV and beyond. STEM-EELS of individual nanomaterials can be challenging due the necessity of a support film.
    Read article
  • Ways to Reveal More from your Samples: Ultra-Thin Carbon Films

    Application Note for Leica EM ACE600 - Much of the battle involved in obtaining good transmission electron microscopy data is in the specimen preparation itself. Even though some nanomaterials are already electron transparent (e.g. nanoparticles and proteins) and often do not require further thinning procedures, they need to be dispersed onto thin support films.
    Read article
  • Measuring the 3D STED-PSF with a new Type of Fluorescent Beads

    A new type of fluorescent bead is presented by GATTAquant. These beads, called GATTA-Beads, are characterized by a small diameter (23 nm), high intensity and size uniformity. In combination with state-of the-art STED microscopes such as the Leica TCS SP8 STED 3X and high-end image restoration methods available in the Huygens Software, it is shown that these new beads can be used for accurate STED PSF characterization in 3D. Furthermore, it is shown that the measured 3D STED-PSF can be used to improve image restoration quality in combination with STED deconvolution methods available in the Huygens Software.
    Read article
  • Cross Sectioning of a Superconductive Wire

    Application Note for Leica EM TIC 3X - Purpose: The shape of the wire is difficult for ion beam slope cutting. Goal: Cross sectional preparation to see the structure of the wire.
    Read article
  • C. Elegans

    Work Efficiently in Developmental Biology with Stereo and Confocal Microscopy: C. elegans

    For scientists, technicians, and teachers working with the worm C. elegans in the research lab or classroom, this report is intended to give useful information to help improve their daly work. The aim is to make the work steps of worm picking, transgenesis, RNA interference, screening, and functional imaging efficient. It also details the various possibilities for equipping a research worm lab or biology classroom/teaching lab explaining worm methods.
    Read article
  • Cross Section of an Aluminium Sample for Electron Backscattered Diffraction (EBSD)

    Application Note for Leica EM TIC020, Leica EM TIC 3X - Electron backscattered diffraction (EBSD) is for example used to examine the crystallographic orientation of material. The sample preparation for such samples is sometimes very tricky as the depth of information is just few nm (~20nm or less). That means the sample surface must be flat and free of preparation artefacts. Mechanical polishing leads mostly to sample surfaces damages.
    Read article
  • Ion Beam Polishing of Sample Surfaces - Sample Preparation for SEM

    Application Note for Leica EM RES102 - Ion milling can be used to reduce the roughness of sample surfaces. Small angles less than 6° with respect to the sample surface are necessary. The high voltage depends on the material to be prepared. The reason for the levelling effect is the different milling angle of flat and rough surface areas. The milling rate is lower for small angles. The rough surface area will be faster milled. Ion polishing is often the final step of sample preparation. The prerequisite is a perfect mechanical prepreparation as samples with deep surface scratches cannot be ion polished. Soft materials usually have a smeared sample surface after mechanical polishing. It is necessary to remove this smeared material before ion polishing. Otherwise the above mentioned polishing effect does not work.
    Read article
  • Cleaning of Smeared Sample Surfaces - Sample Preparation for SEM

    Application Note for Leica EM RES102 - Mechanical polishing of soft materials or hard / soft material combinations is tricky. The mechanical polishing process leads very often to smearing of the soft material. The smeared material covers the surface and fills small pores or holes. Grain structures, interfaces and other structural details can be masked. An additional ion milling step with milling angles between 10° C and 15° C with respect to the sample surface can remove or reduce the contamination.
    Read article