Contact & Support
Header Image
  • Nanoscale or Microscale Structures Formed in Polymers Containing Nanotubes Greatly Enhance the Electrical Conductivity: Potential Applications for Photovoltaic Devices

    The excellent mechanical and electrical properties of carbon nanotubes have led to them being exploited for the creation of a new class of high performance polymer composites. Due to important advances in the last few years, nanotube containing polymers have been developed for optoelectronic applications.
    Read article
  • Video: High Speed Scanning – With two Scanners in one System

    High speed scanning is necessary to image rapidly changing biological processes. With traditional scanning techniques, imaging speed is limited by the number of fluorophores in a specimen. And, rapid acquisition often comes at the cost of image resolution.
    Read article
  • GSDIM Publication List

    GSDIM microscopy is a widefield super-resolution technique based on the localization of fluorophores with nanometer precision. With its help a lateral resolution of down to 20 nm can be achieved, whereas the new 3D feature even shrinks axial resolution to 50 nm. Here we provide a collection of publications around that super-resolution microscopy method also called dSTORM.
    Read article
  • Video: Prism-based Spectral Dispersion – Leica TCS SP8 Confocal

    Spectral separation is crucial for differentiating between your specimen's fluorescence emissions and determining relationships between biological structures. Watch this informative video on the benefits of Leica's prism-based dispersion technology.
    Read article
  • What Does 30,000:1 Magnification Really Mean?

    One important criterion concerning the performance of an optical microscope is magnification. This report will offer digital microscopy users helpful guidelines to determine the useful range of magnification values.
    Read article
  • Immunotherapy to Combat Cancer: "Sleeping Beauty" – DNA Plasmid-based Gene Transfer System to Modify T Cells

    Fighting cancer is a major goal of present-day medicine. So far mainly surgery, chemotherapy or radiation therapy are utilized to extinguish cancerous tissue, or at least set limits to it. Interestingly the human immune system has effective potential to fight cancer cells. Typically it reacts on parasitic, viral or bacterial infections. Thereby T-cells help to destroy infested cells after binding them via their specific antigen receptor.
    Read article
  • Super-Resolution – On a Heuristic Point of View About the Resolution of a Light Microscope

    Since super-resolution has become one of the most favored methods in biomedical research, the term has become increasingly popular. Still, there is much of confusion about what is super-resolution and what is resolution at all. Here, the classical view of microscopic resolution is discussed and some techniques that resolve better than classical are briefly introduced. The picture on the right shows the intensity distribution of an image of two points whose distance is just the Rayleigh criterion (false color coding).
    Read article
  • A Bright Dye for Live-Cell STED Microscopy

    The aim of cell biology is to study smallest details on a cellular level preferably in a live cell experiment. By providing fast and direct super-resolution, STED (Stimulated Emission Depletion) microscopy is the perfect tool for studying cellular details in the nanometer range in vivo.
    Read article
  • "Leica is always flexible and dynamic" - Interview with Audrey Salles, Pasteur Institute, Paris

    Audrey Salles is a specialist for confocal and super-resolution microscopy at Pasteur Institute, Imagopole, PFID, Paris, France. Her research interests are cytokine signaling and skeleton organization of human TCD4-cells.
    Read article
  • Video Interview with Jean-Luc Vonesch

    Jean-Luc Vonesch is head of the imaging facility at the Institute of Genetics and Molecular and Cellular Biology (IGBMC), Strasburg, France. 23 years ago he was the founder of this facility which nowadays serves more than 850 scientists distributed among 47 working groups. Looking deeply into the cells is of a special interest Vonesch states. And with super-resolution microscopy he pretends it is easier to identify the regions of interest for subsequent electron microscopy: “And so we can gain time thanks to the super-resolution” he says.
    Read article
  • Cleanliness Analysis in Relation to Particulate Contamination

    Devices, products, and their components fabricated in many industries can be quite sensitive to contamination and, as a result, have stringent requirements for cleanliness. Measurement systems for automated particle analysis are often exploited for quantitative validation of product and component cleanliness to fulfill the needs of such industries as automotive, aerospace, microelectronics, pharmaceuticals, and medical devices. This report discusses the use of microscopy based measurement systems for automated particle analysis.
    Read article
  • Video Tutorials: Filling and Assembling of Different Carriers for High-Pressure Freezing

    High pressure freezing (HPF) is a cryo-fixation method primarily for biological samples, but also for a variety of non-biological materials. It is a technique that yields optimal preservation in many cell types and tissues or in organic and inorganic composites. Most commonly, the high pressure frozen samples are analyzed further with light or electron microscopy after appropriate processing.
    Read article
  • How to Choose the Right Confocal Microscope for Your Lab?

    Confocal microscopy has come a very long way since its invention more than a half-century ago. Today, with novel technology driven by leading imaging companies, it has become the standard for fluorescence microscopy. Choosing the right confocal microscope for your specific research requires the appropriate mix of features related to resolution, sensitivity, and speed.
    Read article
  • Which Super-Resolution Method is Right for You?

    Super-resolution microscopy has dramatically improved our understanding of intracellular dynamics, redefining what is possible in biological research. This infographic gives a compact overview on the different super-resolution techniques such as localization, structured illumination and stimulated emission depletion and will help you to choose the technology that best fulfills your individual research needs.
    Read article
  • Video Interview with Rainer Pepperkok

    Rainer Pepperkok is Head of the Advanced Light Microscopy Core Facility and Senior Scientist at the EMBL in Heidelberg (Germany). In the course of his studies he is interested in membrane traffic of the early secretory pathway in mammalian cells which he is trying to analyze with the help of most modern light microcopy techniques.
    Read article
  • Quick Guide to STED Sample Preparation

    This document is intended as a quick reference guide for the most common questions regarding the preparation of samples for the Leica SP8 TCS STED 3X, by briefly explaining the theoretical basics required from samples for stimulated emission depletion. It provides information about the most common immuno-fluorescence labeling techniques, working mounting media, basic quality optimization procedures and experiment designs. It also contains a detailed list of reagents, antibodies and disposables frequently and successfully used in super-resolution STED microscopy. In summary, this guide is meant to present the necessary knowledge, including some tips and tricks, to users that are preparing their first super-resolution microscopy sample.
    Read article
  • Deeper Insights in Transparent Animals

    CLARITY clearing derivatives for multiphoton microscopy. Transparent organisms help us to identify spatial arrangements and connections of cells and tissues, especially neuronal circuits can easily be identified and characterized. CLARITY is on everyone's lips.
    Read article
  • How to Clean a Coater

    Coating of samples is required in the field of electron microscopy to enable or improve the imaging of samples. Compared to the traditional coater design, all parts of a Leica EM ACE Coater can be individually removed and cleaned or, if special cleanliness is needed, even exchanged for spare parts.
    Read article
  • 3D STED (Stimulated Emission Depletion) Microscopy

    The resolution needed to image subcellular architecture and dynamics in light microscopy is hindered by the diffraction limits as described by Ernst Abbe. Simply stated, structures smaller than 200 nanometers are lost in a blur. However, the field of super-resolution microscopy has produced methods to obtain resolution beyond this limit. Leica Microsystems has pioneered this field and offers the Leica TCS SP8 STED 3X for 3D Stimulated Emission Depletion microscopy. STED instantly produces super-resolution images, compatible with the dynamics of living cells, without the need for post-processing.
    Read article
  • Video Interview with Stefan Hell, the Inventor of Super-Resolution

    Professor Stefan Hell is director at the Max Planck Institute for Biophysical Chemistry and head of the department of NanoBiophotonics in Goettingen and widely considered as the father of super-resolution. His inventions of 4Pi and STED microscopy were turned into the first commercial super-resolution microscopes available by Leica Microsystems in 2004 and 2007.
    Read article
  • Video Interview with Werner Zuschratter

    Werner Zuschratter's personal focus is on analyzing the neuronal network, meaning the contacts between nerve cells. Out of this reason he started doing super-resolution microscopy: “It gives us deeper insight into the synapses, into the synaptic machinery, into the molecules we would like to see. Before we could only do electron microscopy and now, with super-resolution, we also have access by light microscopy to the deeper structures inside the nerve system.”
    Read article
  • Brief Introduction to Freeze Fracture and Etching

    Freeze fracture describes the technique of breaking a frozen specimen to reveal internal structures. Freeze etching is the sublimation of surface ice under vacuum to reveal details of the fractured face that were originally hidden. A metal/carbon mix enables the sample to be imaged in a SEM (block-face) or TEM (replica). It is used to investigate for instance cell organelles, membranes, layers and emulsions.
    Read article
  • Video Interview with William Hughes

    William Hughes works at the Garvan Institute of Medical Research, Sydney (Australia). In his Lab Head position he is interested in the causes of diabetes particularly looking at changes in exocytic behavior of pancreatic beta cells as well as fat and muscle cells. TIRF microscopy is predestined for researchers looking at cellular processes near the cytoplasmic membrane.
    Read article
  • Brief Introduction to Specimen Trimming

    Before ultrathin sectioning a sample with an ultramicrotome it has to be pre-prepared. For this pre-preparation, special attention must be paid to the sample size (size of the section), location of the sample (targeting) and accuracy of the block-face edges. This process is generally called trimming, wherein the sample is shaped mainly to a frustum of a pyramid.
    Read article