Contact & Support
Header Image
  • Map the Brain with CLARITY

    Imaging whole brains with CLARITY and multiphoton microscopy. Image a whole brain without sectioning? Investigate neuronal circuits without reconstruction? Perform molecular phenotyping without destroying subcellular structures? Understanding the brain with molecular resolution and global scope has always been challenging. The novel CLARITY method, developed by the Deisseroth laboratory at Stanford University, USA, pushes the barrier of deep tissue imaging a big step ahead.
    Read article
  • Key Factors for Efficient Cleanliness Analysis

    In the automobile industry, even the smallest particles on single components can cause malfunctioning. Fuel, lubricant and urea filter systems are particularly vulnerable. Component cleanliness has therefore become a central quality characteristic in the modern manufacturing process, especially when fitting components of various suppliers.
    Read article
  • Clean Parts – More Reliable and Longer Lifetime

    In the automotive industry, the technical cleanliness of function-critical individual and system components has become an increasingly critical criterion for reliability and service life. This trend is also reflected in ISO/DIS 16232 (road vehicles – cleanliness of components of fluid circuits). Microscope systems with corresponding analytical software enable efficient and reliable residual dirt analysis of injectors, pumps, control units and other micromechanical components.
    Read article
  • Super-Resolution Microscopy Gives New Insights into Nuclear Pore Complex Organization

    The Nuclear Pore Complex (NPC) is a large complex in the nuclear membrane, representing the gate to the eukaryotic genetic makeup. Because of this outstanding function the structure of the NPC is of great interest. Anna Szymborska, scientist at the EMBL in Heidelberg, comments on her resaerch results and the potential of Ground State Depletion microscopy (GSD) for protein complex analysis in the following interview.
    Read article
  • Brief Introduction to Surface Metrology

    Surface metrology is the science that deals with measuring topography. Characterization of a surface with its amplitude, spacing and shape of its features, is called "topography". The term "topography" is derived from Greek roots; "topo-" meaning place and "graph-" describes a type of symbolic diagram.
    Read article
  • Ground Beetles Shed Light on the Environmental History of High Mountain Regions

    With over 35,000 known species, ground beetles – or Carabidae – are among the most speciose groups of animals in the world. Biologist Dr. Joachim Schmidt devotes his entire scientific work to the research of these frequently very small beetles, their ecology, distribution and phylogeny. He is particularly interested in the ground beetles of high mountain regions.
    Read article
  • Super-resolution Microscopy and the Third Dimension

    Optical imaging devices have a finite depth of field and diffraction limited resolution. The depth of field problem was tackled first with confocal microscopes, diffraction unlimited resolution is available since a few years with super-resolution microscopes. Super-resolution microscopes with a solved depth of field problem are now available.
    Read article
  • Acousto Optics in True Confocal Spectral Microscope Systems

    Acousto-optical elements have successfully replaced planar filters in many positions. The white confocal, regarded as the fully spectrally tunable confocal microscope, was not possible without this technique. Acousto-optical elements are highly transparent, quickly tunable and allow many colors to be managed simultaneously. As they show a strong dependence in polarization and have comparably small dimensions, their active part is used to modify and guide the laser illumination light, thereby leaving the principal beam (0th order) unaffected. Excitation color selection and attenuation (excitation filtering), as well as separation of illumination and detection light (beam splitting) are the main fields of application.
    Read article
  • Metallography – an Introduction

    Metallography is the study of the microstructure of all types of metallic alloys. It can be more precisely defined as the scientific discipline of observing and determining the chemical and atomic structure and spatial distribution of the constituents, inclusions or phases in metallic alloys. By extension, these same principles can be applied to the characterization of any material.
    Read article
  • Thermodynamic Considerations Regarding the LN2 in a High Pressure Freezer

    Employing liquid nitrogen (LN2) as a coolant in the complex process of high pressure freezing raises certain considerations regarding phase transition not only of the liquid sample to be frozen but also of the element used to freeze the sample. According to the phase diagram of nitrogen, changes in temperature or pressure will alter the state of this element. At ambient pressure nitrogen is liquid at temperatures between –209,86 °C and –195,80 °C. It is a rather fragile equilibrium within limited phase boundaries.
    Read article
  • Brief Introduction to Contrasting for EM Sample Preparation

    Since the contrast in the electron microscope depends primarily on the differences in the electron density of the organic molecules in the cell, the efficiency of a stain is determined by the atomic weight of the stain attached to the biological structures. Consequently, the most widely used stains in electron microscopy are the heavy metals uranium and lead.
    Read article
  • Brief Introduction to Glass Knifemaking for Electron and Light Microscope Applications

    Glass knives are used in an ultramicrotome to cut ultrathin slices of samples for electron and light microscope applications. For resin and for cryo sections (Tokuyasu samples) the knife edge must be extremely sharp, strong and stable. An important requirement for breaking glass knives of superior quality is the quality of the glass strips. Glass strips are produced from specially selected glass, the thickness and quality of which is precisely controlled. Only strict tolerances ensured by careful quality control allow breaking of two high quality knives from one square.
    Read article
  • Investing in Ergonomically Designed Microscope Workplaces Pays Off

    To do their best at work, people have to have a feeling of physical wellbeing: they are more attentive and motivated and more productive for longer periods of time. As ergonomically designed workplaces are conducive to physical wellbeing, ergonomics makes a direct contribution to the operating result, reducing sick days and enhancing productivity.
    Read article
  • Three-Dimensional Super-Resolution GSDIM Microscopy

    With the new 3D GSDIM technique structures like the Golgi and the microtubular network are resolved not only laterally, but also in a third dimension. The principle is based on the use of optical astigmatism to determine the accurate lateral and axial position of individual fluorochromes.
    Read article
  • 3D Localization Microscopy With Ground State Depletion (GSD)

    With the latest development of a GSD 3D super-resolution platform, it is now possible to achieve a lateral resolution of down to 20 nm and an axial resolution of 70 nm. The technology is based on an astigmatism approach using a manipulated PSF to localize the molecule in z. This following tutorial describes the basic principles of the 3D GSD technology.
    Read article
  • Brief Introduction to Coating Technology for Electron Microscopy

    Coating of samples is required in the field of electron microscopy to enable or improve the imaging of samples. Creating a conductive layer of metal on the sample inhibits charging, reduces thermal damage and improves the secondary electron signal required for topographic examination in the SEM.
    Read article
  • Step by Step Guide to Fluorescence Microscopy

    Fluorescence Microscopy is a special form of light microscopy. It uses fluorescence to highlight structures in fixed and living biological specimens instead of using absorption, phase or interference effects. The fluorescence is delivered either by inorganic dyes, proteins, synthetic beads or by autofluorescent structures within a sample. In this tutorial the principles of fluorescence microscopy will be explained.
    Read article
  • Carbon Thickness Evaluation in Electron Microscopy

    The coating layers applied and used for electron microscopy imaging are commonly controlled and measured by quartz crystals. These crystals oscillate with a certain frequency (around 6 megahertz when new). By measuring the frequency before coating and after coating, the specific weight of the coating material and the geometric position of the quartz, the applied thickness can be calculated.
    Read article
  • Spectral Detection – How to Define the Spectral Bands that Collect Probe-specific Emission

    To specifically collect emission from multiple probes, the light is first separated spatially and then passes through a device that defines a spectral band. Classically, this is a common glass-based bandpass filter. More recent approaches employ arrays for fixed-band detection or moving mirror sliders for fully tunable band characteristics.
    Read article
  • Multiple Microscopy Modes in a Single Sweep with Supercontinuum White Light

    Lasers have been critical to the advancement on confocal microscopy, and the white light laser (WLL) offers particular advantages. Finessing WLL output for bioimaging is a complex task, though, and traditional approaches retain key limitations. But acousto-optical beamsplitting enables smoother operation, leading to enhanced microscopy capabilities.
    Read article
  • Brief Introduction to High-Pressure Freezing

    Water is the most abundant cellular constituent and therefore important for preserving cellular ultra-structure. Currently the only way to fix cellular constituents without introducing significant structural alterations is by cryo-fixation. There are currently two common methods employed; plunge freezing and high pressure freezing.
    Read article
  • Pinhole Geometry: Four Corners are Perfect

    Square and hexagonal pinholes provide identical image signal levels, if the geometries are compared in a sensible manner. The amount of light passing the pinhole depends on the area of that aperture, consequently the area is the parameter that must be compared when discussing brightness of focus images. The use of incommensurable edge lengths is meant to confuse the reader and thus dishonest and reprehensible. In this article, the signal level as a function of geometry and size in confocal microscopes is described.
    Read article
  • Step by Step Guide for FRAP Experiments

    Fluorescence recovery after photobleaching (FRAP) has been considered the most widely applied method for observing translational diffusion processes of macromolecules. State of the art laser scanning microscopes such as the Leica TCS SP8 have the advantage of using a high intensity laser for bleaching and a low intensity laser for image recording. The LAS AF application wizard offers different ways to carry out a FRAP experiment.
    Read article
  • In the Catacombs of the Capuchin Monastery in Palermo

    It has always been a deeply rooted human need to give life a meaning after death. At the end of the 16th century, the friars of the Capuchin monastery in Palermo, Italy, began preserving corpses by embalming them.
    Read article
  • Stereo microscopes with TripleBeam Technology

    Especially in fluorescence microscopy, excitation light is friend and foe in one. On the one hand, energy-rich excitation via a specific light wavelength of the fluorochrome resulting in a bright positive fluorochrome signal is highly welcome. On the other hand, "noise" caused by reflections of excitation light passing through the surfaces of optical elements needs to be extremely slight to generate a perfect black background. This relation is described as "signal-to-noise ratio", which is highly relevant for differentiating optically between fluorescence positive and negative cells.
    Read article