Contact & Support
Header Image

Philipps University Marburg, Institute of Cytobiology and Cytopathology, Germany


The Institute is integrated into the Faculty of Medicine of the Plilipps University in Marburg. The members are doing basic research in cell biology and biological chemistry. The institute is also responsible for the training of students of medicine, dentistry and human biology. Central research projects deal with molecular mechanisms in the biogenesis of cell organelles. The understanding of mutations of the involved proteins is of particular interest here, because these cause diseases. The research is mainly done using the model organisms yeast, mouse and rat. Further, different cell culture systems from mammals are used. The spectrum of methods in the particular projects involves cell biological, biochemical, immunohistochemical, molecular biological and genetical techniques. 

Central research areas are:

  • Biogenesis of Ferric-Sulfur-Proteins in the Mitochondria and in the Cytosol
  • Molecular Basics of the neurodegenerative Disease Friedreich's Ataxie
  • Mechanism and Regulation of the Mitochondrial Ferric-Transport
  • Maturation and Sorting of Proteins in Polarized Epithelia Cells
  • Function of lysosomale Proteins
  • Function of the Mys-Binding Protein Miz-1 in Keratinocytes

  • Webinar: Laser Microdissection in Cancer Research – Mutation Analysis Workflow with Pure Cancer Material

    Cancer can affect various organs and is caused by mutations of the DNA. A prerequisite, to explore and understand underlying gene-mutations involved in the development of a definite type of cancer, is the extraction of pure sample material, which is challenging. In this webinar, we will present how to extract 100% pure cancer tissue for DNA analysis with laser microdissection (LMD). Using tissue samples from human kidney cancer patients as an example, this webinar will provide an overview of the practical considerations when preparing a workflow to obtain highly pure material with the LMD microscope for further molecular analysis.
    Read article
  • How to Prepare Your Specimen for Immunofluorescence Microscopy

    Immunofluorescence (IF) is a powerful method for visualizing intracellular processes, conditions and structures. IF preparations can be analyzed by various microscopy techniques (e.g. CLSM, Epifluorescence, TIRF, GSDIM), depending on the application or the researcher’s interest. Meanwhile, IF has become indispensable for a large number of research groups which have at least access to a simple fluorescence microscope.
    Read article
  • The Force of the Dark Side – Embedding Media for GSDIM Super-Resolution Localization Microscopy

    Super-resolution microscopy such as Stimulated Emission Depletion (STED) and single-molecule based techniques rely on the same principle for breaking the diffraction limit: the unwanted fluorescence signals are switched off during the image acquisition process. Consequently, Ground State Depletion followed by Individual Molecule Return (GSDIM) microscopy and related techniques like PALM, STORM and dSTORM use metastable dark states of a fluorophore for temporal separation of single molecules.
    Read article
  • Three-Dimensional Super-Resolution GSDIM Microscopy

    With the new 3D GSDIM technique structures like the Golgi and the microtubular network are resolved not only laterally, but also in a third dimension. The principle is based on the use of optical astigmatism to determine the accurate lateral and axial position of individual fluorochromes.
    Read article
  • Abstracts of the 3rd European Super-Resolution User-Club Meeting

    The 3rd meeting of the Leica Super-Resolution User Club was held from June 17th to 19th, 2013 in collaboration with Alberto Diaspro and the Italian Institute of Technology (IIT) in Genoa. Confocal and widefield super-resolution users from ten European countries took three days’ out to deepen their knowledge on super-resolution techniques and applications and make use of an opportunity for full exchange of experiences.
    Read article
  • Webinar: From Epifluorescence to Super-Resolution in 3D

    This webinar will illustrate results obtained by biochemical, Epifluorescence, TIRFM, Confocal and GSD techniques. Depending on the aim of experimental question, different imaging techniques deliver insights into varying aspects of intracellular pathways. To achieve "True-to-detail imaging" of the spatial arrangement of proteins and other biomolecules in cells, GSDIM achieves resolutions up to 20 nm in x and y direction – beyond the diffraction limit of light microscopy. But Super-resolution microscopy can be applied in the axial (z-) direction, too. A recent commercial implementation of the astigmatism approach will be discussed in more detail during this webinar.
    Read article
  • Targeting of Peroxisomal Matrix Proteins in the Diatom Phaeodactylum Tricornutum

    P. tricornutum cells expressing different types of GFP fusion proteins were harvested via centrifugation at 1,500xg and cryoimmobilized by high-pressure freezing on gold carriers.
    Read article
  • Tubulin Modifications Affect Monolayer Formation and Apical Trafficking in Epithelial Cells

    The development and maintenance of polarized epithelial cells requires the establishment of complicated subcellular machinery. We studied the role of post-translational tubulin modifications within this process. At first, the distribution of detyrosinated microtubules was assessed in MDCK cells via immunofluorescence microscopy. No preferential accumulation of tyrosinated or detyrosinated microtubules could be detected at the apical or basal cell poles in epithelial cell cysts. However, during monolayer formation, the quantities of detyrosinated tubulin increased significantly over time.
    Read article
  • Total Internal Reflection Fluorescence (TIRF) Microscopy

    Total internal reflection fluorescence (TIRF) is a special technique in fluorescence microscopy developed by Daniel Axelrod at the University of Michigan, Ann Arbor in the early 1980s. TIRF microscopy delivers images with an outstandingly high axial resolution below 100 nm. This allows the observation of membrane-associated processes.
    Read article
  • Applications of TIRF Microscopy in Life Science Research

    The special feature of TIRF microscopy is the employment of an evanescent field for fluorophore excitation. Unlike standard widefield fluorescence illumination procedures with arc lamps, LEDs or lasers, the evanescent field only penetrates the specimen by about 100 nm starting from the coverslip/medium interface.
    Read article
  • The Patch-Clamp Technique

    Especially in neuroscience, the physiology of ion channels has always been a major topic of interest. The development of the patch-clamp technique in the late 1970s has given electrophysiologists new prospects. It allows high-resolution current recordings not only of whole cells, but also of excised cellular patches. Even single-channel opening events can be investigated. However, with its complex technical, physical and biological background, the need for highly sensitive equipment and the huge amount of skills required of the experimenter, electrophysiology is still one of the most challenging methods in daily laboratory work.
    Read article
  • Super-Resolution GSDIM Microscopy

    The nanoscopic technique GSDIM (ground state depletion microscopy followed by individual molecule return) provides a detailed image of the spatial arrangement of proteins and other biomolecules within the cell. There is now a first commercial system (the Leica SR GSD) on the market that is helping to make the GSDIM technique available to a wider group of users in research labs and imaging centers.
    Read article
  • Optical Contrast Methods

    Optical contrast methods give the potential to easily examine living and colorless specimens. Different microscopic techniques aim to change phase shifts caused by the interaction of light with the specimen into amplitude shifts that are visible to the human eye as differences in brightness.
    Read article
  • Phase Contrast

    Phase contrast is an optical contrast technique for making unstained phase objects (e.g. flat cells) visible under the light microscope. Cells that appear inconspicuous and transparent in brightfield can be viewed in high contrast and rich detail using phase contrast microscopy.
    Read article
  • Differential Interference Contrast (DIC)

    Differential interference contrast (DIC) microscopy is a good alternative to brightfield microscopy for gaining proper images of unstained specimens that often only provide a weak image in brightfield.
    Read article
  • An Introduction to Fluorescence

    Fluorescence is widely used in microscopy and an important tool for observing the distribution of specific molecules. Most molecules in cells do not fluoresce. They therefore have to be marked with fluorescing molecules called fluorochromes.
    Read article
  • Photo Effects of Light

    Molecules and atoms can exist in different quantum states. These states are dedicated to different energy levels; the quantum state with the lowest energy is called the ground state. Every state of greater energy is an excited state of the quantum mechanical system. Electrons can be excited by an exogenous energy source and switch to a higher energy level, changing the quantum state of the molecule or atom. The electrons are often referred to as being brought to a state of higher energy.
    Read article
  • Polarization Contrast

    Polarization microscopy is routinely applied in material sciences and geology to identify minerals on the basis of characteristic refraction properties and colors. In biology, polarization microscopy is commonly used for identification or imaging of birefringent structures like crystals, or for imaging of cellulose in cell walls of plants and starch grains.
    Read article
  • Fluorescence in Microscopy

    Fluorescence microscopy is a special form of light microscopy. It uses the ability of fluorochromes to emit light after being excited with light of a certain wavelength. Proteins of interest can be marked with such fluorochromes via antibody staining or tagging with fluorescent proteins.
    Read article
  • TIRF Microscopy of the Apical Membrane of Polarized Epithelial Cells

    Application of TIRF microscopy (Total Internal Reflection Fluorescence) allows the visualization of structures at the apical surface of polarized epithelial cells that have been hidden in conventional fluorescence microscopy images. Hence, the approach reveals new insights into the composition of this characteristic cell pole that elucidate processes in apical protein trafficking.
    Read article
  • Apical Cargo Traverses Endosomal Compartments on the Passage to the Cell Surface

    Epithelial polarity is based on intracellular sorting machinery that maintains the asymmetric distribution of lipids and proteins to the cell surface. Dependent on their lipid raft affinity, newly synthesized apical polypeptides are segregated into distinct vesicle populations subsequent to the passage through the Golgi apparatus.
    Read article
  • Exploring Cell Logistics

    Using TIRF microscopy, scientists have been able to take a closer look at intracellular transport processes with the example of the galactose-binding protein Galectin-3, which has been identified as a potential apical sorting receptor.
    Read article