Contact Us
Science Lab

Science Lab

Science Lab

The knowledge portal of Leica Microsystems offers scientific research and teaching material on the subjects of microscopy. The content is designed to support beginners, experienced practitioners and scientists alike in their everyday work and experiments. Explore interactive tutorials and application notes, discover the basics of microscopy as well as high-end technologies – become part of the Science Lab community and share your expertise!
Protist Paramecium (Paramecium tetraurelia) stained to show the nucleus

AI-Enabled Spatial Analysis of Complex 3D Datasets

VIDEO ON DEMAND - This edition of MicaCam offers practical advice on the extraction of publication grade insights from microscopy images. Our special guest Luciano Lucas (Leica Microsystems) will…
MDCK cysts on day 9

How To Perform Fast & Stable Multicolor Live-Cell Imaging

With the help of live-cell imaging researchers gain insights into dynamic processes of living cells up to whole organisms. This includes intracellular as well as intercellular activities. Protein or…
Image of a single slice taken from a zebrafish heart showing the ventricle with an injury in the lower area. Nuclei of all cells are indicated with blue, nuclei of the cardiomyocyte heart muscle cells with green, and the proliferating cells with red. Courtesy of Laura Peces-Barba Castaño, Max Planck Institute for Heart and Lung Research, Germany.

Imaging of Cardiac Tissue Regeneration in Zebrafish

Learn how to image cardiac tissue regeneration in zebrafish focusing on cell proliferation and response during recovery. MicaCam Episode 04 with Laura Peces-Barba Castaño from the Max Planck…

How Does The Cytoskeleton Transport Molecules?

VIDEO ON DEMAND - See how 3D cysts derived from MDCK cells help scientists understand how proteins are transported and recycled in tissues and the role of the cytoskeleton in this transport.
Developing zebrafish (Danio rerio) embryo, from sphere stage to somite stages.

Studying Early Phase Development of Zebrafish Embryos

VIDEO ON DEMAND - This second edition of MicaCam focuses on combining widefield and confocal imaging to study the early-stage development of zebrafish embryos (Danio rerio), from oocyte to…
U2OS cells stained with Hoechst for nuclei (blue), MitoTracker green (Mitochondria structure, green) and TMRE (active mitochondria, magenta) and SiR for tubulin (red). Simultaneous acquisition of four channel large area overview using Spiral scan feature using the 10x/1.20 CS2 Water MotCORR objective.

How To Get Multi Label Experiment Data With Full Spatiotemporal Correlation

VIDEO ON DEMAND - The first edition of MicaCam focuses on the special challenges of live cell experiments. Our hosts Lynne Turnbull and Oliver Schlicker use the example of studying the mitochondrial…
Wt1b-positive myocardial cell adopting an epicardial cell morphology.

Wt1 Genes Can Induce a Cardiomyocyte to Epicardial-like Cell Fate Transition

From this study, it was concluded that Wt1 plays a yet undescribed role for cardiomyocyte differentiation by repressing chromatin opening at specific genomic loci and that sustained ectopic expression…
Multi-color SRS image of a tri-cellular cancer spheroid

The Potential of Coherent Raman Scattering Microscopy at a Glance

Coherent Raman scattering microscopy (CRS) is a powerful approach for label-free, chemically specific imaging. It is based on the characteristic intrinsic vibrational contrast of molecules in the…

A Versatile Palette of Fluorescent Probes

Researchers at the Max Planck Institute for Medical Research in Heidelberg have developed a general strategy to synthesize live-cell compatible fluorogenic probes, and the result are the new MaP (Max…
Scroll to top