Leica Science Lab - Tag : Patch-Clamp https://www.leica-microsystems.com//science-lab/tag/?tx_leicaacademy_pi4%5Baction%5D=show&tx_leicaacademy_pi4%5Bcontroller%5D=Tag&tx_leicaacademy_pi4%5Btag%5D=267&cHash=8c73127430bcfefaab65b8c835d08fff Article tagged with Patch-Clamp en-US https://www.leica-microsystems.com/14656 Confocal Microscopy Super-Resolution CLEM Live-Cell Imaging Quantitative Imaging ICln: A New Regulator of Non-Erythroid 4.1R Localisation and Function To optimise the efficiency of cell machinery, cells can use the same protein (often called a hub protein) to participate in different cell functions by simply changing its target molecules. There are large data sets describing protein-protein interactions ("interactome") but they frequently fail to consider the functional significance of the interactions themselves. https://www.leica-microsystems.com/science-lab/icln-a-new-regulator-of-non-erythroid-41r-localisation-and-function/ Mon, 03 Nov 2014 18:02:00 +0000 https://www.leica-microsystems.com/12002 Confocal Microscopy Live-Cell Imaging The Relationship Between Membrane Potential and Calcium Dynamics in Glucose-Stimulated Beta Cell Syncytium in Acute Mouse Pancreas Tissue Slices Oscillatory electrical activity is regarded as a hallmark of the pancreatic beta cell glucose-dependent excitability pattern. Electrophysiologically recorded membrane potential oscillations in beta cells are associated with in-phase oscillatory cytosolic calcium activity ([Ca2+]i) measured with fluorescent probes. Recent high spatial and temporal resolution confocal imaging revealed that glucose stimulation of beta cells in intact islets within acute tissue slices produces a [Ca2+]i change with initial transient phase followed by a plateau phase with highly synchronized [Ca2+]i oscillations. https://www.leica-microsystems.com/science-lab/the-relationship-between-membrane-potential-and-calcium-dynamics-in-glucose-stimulated-beta-cell-syncytium-in-acute-mouse-pancreas-tissue-slices/ Tue, 17 Dec 2013 17:08:00 +0000 https://www.leica-microsystems.com/11033 Neuroscience Stereo Microscopy Live-Cell Imaging Patch Clamp Recordings from Embryonic Zebrafish Mauthner Cells Mauthner cells (M-cells) are large reticulospinal neurons located in the hindbrain of teleost fish. They are key neurons involved in a characteristic behavior known as the C-start or escape response that occurs when the organism perceives a threat. The M-cell has been extensively studied in adult goldfish where it has been shown to receive a wide range of excitatory, inhibitory and neuromodulatory signals. We have been examining M-cell activity in embryonic zebrafish in order to study aspects of synaptic development in a vertebrate preparation. In the late 1990s Ali and colleagues developed a preparation for patch clamp recording from M-cells in zebrafish embryos, in which the CNS was largely intact. https://www.leica-microsystems.com/science-lab/patch-clamp-recordings-from-embryonic-zebrafish-mauthner-cells/ Fri, 11 Oct 2013 21:40:00 +0000 https://www.leica-microsystems.com/4727 Neuroscience Live-Cell Imaging The Patch-Clamp Technique Especially in neuroscience, the physiology of ion channels has always been a major topic of interest. The development of the patch-clamp technique in the late 1970s has given electrophysiologists new prospects. It allows high-resolution current recordings not only of whole cells, but also of excised cellular patches. Even single-channel opening events can be investigated. However, with its complex technical, physical and biological background, the need for highly sensitive equipment and the huge amount of skills required of the experimenter, electrophysiology is still one of the most challenging methods in daily laboratory work. https://www.leica-microsystems.com/science-lab/the-patch-clamp-technique/ Wed, 09 Nov 2011 16:28:00 +0000 Dr. Sophie Veitinger https://www.leica-microsystems.com/9687 Neuroscience Mutagenesis and Functional Analysis of Ion Channels Heterologously Expressed in Mammalian Cells We will demonstrate how to study the functional effects of introducing a point mutation in an ion channel. We study G protein-gated inwardly rectifying potassium (referred to as GIRK) channels, which are important for regulating the excitability of neurons. There are four different mammalian GIRK channel subunits (GIRK1-GIRK4) – we focus on GIRK2 because it forms a homotetramer. https://www.leica-microsystems.com/science-lab/mutagenesis-and-functional-analysis-of-ion-channels-heterologously-expressed-in-mammalian-cells/ Fri, 01 Oct 2010 16:35:00 +0000 https://www.leica-microsystems.com/8111 Neuroscience Live-Cell Imaging New Standard in Electrophysiology and Deep Tissue Imaging The function of nerve and muscle cells relies on ionic currents flowing through ion channels. These ion channels play a major role in cell physiology. One way to investigate ion channels is to use patch clamping. This method allows investigation of ion channels in detail and recording of the electric activity of different types of cells, mainly excitable cells like neurons, muscle fibres or beta cells of the pancreas. The patch clamping technique was developed by Erwin Neher and Bert Sakmann in the 1970s and 80s to study individual ion channels in living cells. In 1991 they received the Nobel Prize for Physiology and Medicine for their work. Today the patch clamping technique is one of the most important methods in the field of electrophysiology. https://www.leica-microsystems.com/science-lab/new-standard-in-electrophysiology-and-deep-tissue-imaging/ Tue, 17 Mar 2009 22:04:00 +0000 Dr. Irmtraud Steinmetz