Leica Science Lab - Tag : Critical Point Drying https://www.leica-microsystems.com//science-lab/tag/critical-point-drying/ Article tagged with Critical Point Drying en-US https://www.leica-microsystems.com/18094 EM Sample Preparation Micro-CT of Insect Larva Protocol Species: red blood worm (midge larva) Critical point drying of midge larvae with subsequent X-ray micro-computed tomography (micro-CT) to reconstruct the inner anatomy. https://www.leica-microsystems.com/science-lab/micro-ct-of-insect-larva-protocol/ Tue, 14 Mar 2017 07:14:00 +0000 PhD Elisabeth Lipke, PhD Peter Michalik https://www.leica-microsystems.com/18110 EM Sample Preparation Tobacco Leaf - Critical Point Drying Protocol for SEM Application Note for Leica EM CPD300 - Critical point drying of tobacco leafs with subsequent platinum coating and SEM analysis. https://www.leica-microsystems.com/science-lab/tobacco-leaf-critical-point-drying-protocol-for-sem/ Fri, 18 Nov 2016 16:21:00 +0000 Dr. Martin W. Goldberg, M.Sc. Christine Richardson https://www.leica-microsystems.com/18106 EM Sample Preparation Nematode E. dianae - Critical Point Drying Protocol for SEM Application Note for Leica EM CPD300 - Critical point drying of nematode Eubostrichus dianae to detect the ectosymbiotic bacteria layer with subsequent gold coating ans SEM analysis. https://www.leica-microsystems.com/science-lab/nematode-e-dianae-critical-point-drying-protocol-for-sem/ Wed, 16 Nov 2016 11:05:00 +0000 Mag. Nikolaus Leisch https://www.leica-microsystems.com/18142 EM Sample Preparation Wall Cress Pod Protocol - Critical Point Drying of Arabidopsis thaliana for SEM Application Note for Leica EM CPD300 - Critical point drying of wall cress (Arabidopsis thaliana) pod with subsequent gold coating and SEM analysis. https://www.leica-microsystems.com/science-lab/wall-cress-pod-protocol-critical-point-drying-of-arabidopsis-thaliana-for-sem/ Tue, 25 Oct 2016 08:00:00 +0000 Dr. Chen LiYu https://www.leica-microsystems.com/18096 EM Sample Preparation Bacteria Protocol - Critical Point Drying of E. coli for SEM Application Note for Leica EM CPD300 - Critical point drying of E. coli with subsequent platinum / palladium coating and SEM analysis. Sample was inserted into a filter disc (Pore size: 16 - 40 μm) and placed into the filter discs and porous pots holder. Cultivate fungi and bacteria on agar containing growth medium for 3 days. https://www.leica-microsystems.com/science-lab/bacteria-protocol-critical-point-drying-of-e-coli-for-sem/ Thu, 13 Oct 2016 10:04:00 +0000 Dr. W. H. Mueller https://www.leica-microsystems.com/18104 EM Sample Preparation Clawed Frog Nuclear Envelope Protocol Application Note for Leica EM CPD300 - Critical point drying of nuclear pores from clawed frog oocytes with subsequent chromium coating and SEM analysis. Silicon chips containing the samples were placed into the filter discs and porous pots holder. https://www.leica-microsystems.com/science-lab/clawed-frog-nuclear-envelope-protocol/ Thu, 06 Oct 2016 16:00:00 +0000 Dr. Martin W. Goldberg, M.Sc. Christine Richardson https://www.leica-microsystems.com/18092 EM Sample Preparation Micro-Computed Tomography (micro-CT) of Insect Brain Protocol Application Note for Leica EM CPD300 - Critical point drying of the blow fly with subsequent X-ray micro-computed tomography (micro-CT) to detect neuroanatomical features. https://www.leica-microsystems.com/science-lab/micro-computed-tomography-micro-ct-of-insect-brain-protocol/ Thu, 06 Oct 2016 14:41:00 +0000 PhD Elisabeth Lipke, PhD Peter Michalik https://www.leica-microsystems.com/18090 EM Sample Preparation Micro-Computed Tomography (micro-CT) of Book Scorpion Musculature Application Note for Leica EM CPD300 - Critical point drying of book scorpion with subsequent X-ray micro-computed tomography (micro-CT) to detect anatomical features with special regard to the musculature. https://www.leica-microsystems.com/science-lab/micro-computed-tomography-micro-ct-of-book-scorpion-musculature/ Thu, 01 Sep 2016 08:39:00 +0000 PhD Elisabeth Lipke, PhD Peter Michalik https://www.leica-microsystems.com/18144 EM Sample Preparation Wrinkled Giant Hyssop Leaf Protocol Application Note for Leica EM CPD300 - Critical point drying of wrinkled giant hyssop leaf with subsequent gold coating and SEM analysis. https://www.leica-microsystems.com/science-lab/wrinkled-giant-hyssop-leaf-protocol/ Thu, 11 Aug 2016 17:04:00 +0000 Dr. Guo JianSheng https://www.leica-microsystems.com/18100 EM Sample Preparation Black Mould Protocol Application Note for Leica EM CPD300 - Critical point drying of Black mould (Aspergilus niger) with subsequent platinum / palladium coating and SEM analysis to detect conidiospores. Sample was inserted into a filter disc (Pore size: 16 - 40 μm) and placed into the filter discs and porous pots holder. https://www.leica-microsystems.com/science-lab/black-mould-protocol/ Tue, 09 Aug 2016 12:01:00 +0000 Dr. W. H. Mueller https://www.leica-microsystems.com/18086 EM Sample Preparation Water Flea Protocol Application Note for Leica EM CPD300 - Critical point drying of water flea with subsequent gold coating and SEM-Analysis to detect finde surface structures. https://www.leica-microsystems.com/science-lab/water-flea-protocol/ Tue, 07 Jun 2016 07:06:00 +0000 Mag. Dr. Daniela Gruber https://www.leica-microsystems.com/18079 EM Sample Preparation Human Blood Cells Protocol Application Note for Leica EM CPD300 - Life Science Research. Species: Human (Homo sapiens) Critical point drying of human blood with subsequent platinum / palladium coating and SEM analysis. https://www.leica-microsystems.com/science-lab/human-blood-cells-protocol/ Tue, 24 May 2016 08:03:00 +0000 Dr. W. H. Mueller https://www.leica-microsystems.com/16010 EM Sample Preparation Critical-point Drying for the Preparation of Biological Samples for MicroCT Analysis X-ray micro-computed tomography (micro-CT) is a routinely applied non-invasive technique for the investigation of the internal anatomy and morphology of organisms. As a result of a micro-CT scan a stack of grey-scale images is generated from a series of projections taken at defined angles during sample rotation. Since several years the number of lab-based micro-CT imaging systems is constantly growing making this technique available to a broad spectrum of researchers and applications. https://www.leica-microsystems.com/science-lab/critical-point-drying-for-the-preparation-of-biological-samples-for-microct-analysis/ Mon, 06 Jul 2015 13:23:00 +0000 PhD Peter Michalik, PhD Elisabeth Lipke https://www.leica-microsystems.com/7972 EM Sample Preparation Brief Introduction to Critical Point Drying One of the uses of the Scanning Electron Microscope (SEM) is in the study of surface morphology in biological applications which requires the preservation of the surface details of a specimen. Samples for Electron Microscopy (EM) imaging need to be dried in order to be compatible with the vacuum in the microscope. The presence of water molecules will disturb the vacuum and with it the imaging. https://www.leica-microsystems.com/science-lab/brief-introduction-to-critical-point-drying/ Mon, 10 Dec 2012 23:00:00 +0000 Dr. Ruwin Pandithage