Contact Us
Science Lab

Science Lab

Science Lab

The knowledge portal of Leica Microsystems offers scientific research and teaching material on the subjects of microscopy. The content is designed to support beginners, experienced practitioners and scientists alike in their everyday work and experiments. Explore interactive tutorials and application notes, discover the basics of microscopy as well as high-end technologies – become part of the Science Lab community and share your expertise!
Dynamic Signal Enhancement powered by Aivia: Truly simultaneous multicolor imaging of live cells (U2OS) in 3D

How Artificial Intelligence Enhances Confocal Imaging

In this article, we show how artificial intelligence (AI) can enhance your imaging experiments. Namely, how Dynamic Signal Enhancement powered by Aivia improves image quality while capturing the…
STED imaging of mitochondria revealed cristae dynamics during fusion. A comparison of confocal (left) and STED (right) imaging.

Mitochondrial Dynamics Quantitatively Revealed by STED Nanoscopy

Mitochondria are vital subcellular organelles, which can generate energy to support the entire lifecycle of biological cells. However, conventional fluorescence microscopy cannot provide a high enough…

How to Successfully Perform Live-cell CLEM

The Leica Nano workflow provides a streamlined live-cell CLEM solution for getting insight bout structural changes of cellular components over time. Besides the technical handling described in the…
HeLa Kyoto cells (HKF1, H2B-mCherry, alpha Tubulin, mEGFP). Left image: Maximum projection of a z-stack prior to ICC and LVCC. Right image: Maximum projection of a mosaic z-stack after ICC and LVCC.

How to Improve Live Cell Imaging with Coral Life

For live-cell CLEM applications, light microscopy imaging is a critical step for identifying the right cell in the right state at the right time. In this article, Leica experts share their insights on…
The EM ICE Nano loading area

How to Keep Your Samples Under Physiological Conditions

The Coral Life workflow combines dynamic data with the best possible sample fixation by high pressure freezing. However, good sample preservation won’t help if your cells are stressed by temperature…
Nematostella

Live Cell Imaging Gallery

Live cell microscopy techniques are fundamental to get a better understanding of cellular and molecular function. Today, widefield microscopy is the most common technique used to visualize cell…

Putting Dynamic Live Cell Data into the Ultrastructural Context

With workflow Coral Life, searching for a needle in the haystack is a thing of the past. Take advantage of correlative light and electron microscopy to identify directly the right cell at the right…
Electroporated nerve cells (green), specific neuronal markers (magenta) and cell nuclei (white), computational cleared.

Into the Third Dimension with "Wow Effect"- Observe Cells in 3D and Real-Time

Life is fast, especially for a cell. As a rule, cells should be examined under physiological conditions which are as close as possible to their natural environment. New technologies offer tremendous…
Lung organoid taken at the "liquid-air interface" with a THUNDER Imager 3D Cell Culture. The cells originate from transgenic mice, so that the different fluorescence represents the degree of differentiation of the respective cell (superposition). The image acquisition was performed on day 21 after the start of the culture. Reference: P. Kanrai, MPI-HLR Bad Nauheim.

Observing 3D Cell Cultures During Development

3D cell cultures, such as organoids and spheroids, give insights into cells and their interactions with their microenvironment. These 3D cell cultures are playing an increasingly important role for…
Scroll to top