Contact & Support

CCD

RSS feed
  • Definitions of Basic Technical Terms for Digital Microscope Cameras and Image Analysis

    Most microscopes today are operated with a camera. The characteristics of the camera often decide whether the acquired image will reveal what a researcher wants to see. But when diving into camera terminology, the technical terms can be overwhelming. We have compiled the most important terms with a concise explanation to provide orientation.
    Read article
  • What Makes sCMOS Microscope Cameras so Popular?

    sCMOS cameras are more sensitive and are capable of much higher acquisition speed than cameras with other sensor types. Even though CCD cameras are widely used in live cell imaging and time-lapse recordings, researchers are often concerned that their camera does not detect faint signals. In this interview, Dr. Karin Schwab, Product Manager at Leica Microsystems, talks about the characteristics of sCMOS cameras and how researchers benefit from the latest camera sensor technology.
    Read article
  • Introduction to Digital Camera Technology

    A significant majority of modern optical microscopy techniques require the use of a digital camera. By working with digital devices researchers can observe specimens on a screen in real time or acquire and store images and quantifiable data. Here we introduce the basic principles behind digital camera technologies commonly encountered in scientific imaging.
    Read article
  • Towards Digital Photon Counting Cameras for Single-molecule Optical Nanoscopy

    A SPAD array camera with single-photon sensitivity and zero read-out noise allows for the detection of extremely weak signals at ultra-fast imaging speeds. With temporal resolution in the order of micro-seconds, a SPAD array camera offers great potential for live-cell imaging with super-resolution.
    Read article
  • Digital Camera Technologies for Scientific Bio-Imaging

    This four-part series of articles published in Microscopy and Analysis covers the factors to consider in choosing a camera among CCD, EMCCD, and scientific-grade CMOS camera technologies for biological imaging applications. The differences among the sensor architectures and the impact of parameters such as pixel size, noise, and QE on signal-to-noise performance, image quality, and Nyquist sampling are considered.
    Read article