Contact & Support

Cell Culture

RSS feed
  • Introduction to Mammalian Cell Culture

    Mammalian cell culture is one of the basic pillars of life sciences. Without the ability to grow cells in the lab, the fast progress in disciplines like cell biology, immunology, or cancer research would be unthinkable. This article gives an overview of mammalian cell culture systems. Mainly, they can be categorized according to their morphology, as well as cell type and organization. Moreover, you can find basic information about the correct growth conditions and what kind of microscope you need to watch your cells.
    Read article
  • Visualizing Tropoelastin in a Long-Term Human Elastic Fibre Cell Culture Model

    Elastin is an essential protein found in a variety of tissues where resilience and flexibility are needed, such as the skin and the heart. When aiming to engineer suitable implants, elastic fibres are needed to allow adequate tissue renewal. However, the visualization of human elastogenesis remains in the dark. To date, the visualization of human tropoelastin (TE) production in a human cell context and its fibre assembly under live cell conditions has not been achieved. Here, we present a long-term cell culture model of human dermal fibroblasts expressing fluorescence-labelled human TE. We employed a lentiviral system to stably overexpress Citrine-labelled TE to build a fluorescent fibre network. Using immunofluorescence, we confirmed the functionality of the Citrine-tagged TE. Furthermore, we visualized the fibre assembly over the course of several days using confocal microscopy. Applying super resolution microscopy, we were able to investigate the inner structure of the elastin–fibrillin-1 fibre network.
    Read article
  • How to do a Proper Cell Culture Quick Check

    In order to successfully work with mammalian cell lines, they must be grown under controlled conditions and require their own specific growth medium. In addition, to guarantee consistency their growth must be monitored at regular intervals. This article describes a typical workflow for subculturing an adherent cell line with detailed illustrations of all of the necessary steps.
    Read article
  • Detailed Morphological Characterisation of Hendra Virus Infection of Different Cell Types Using Super-Resolution and Conventional Imaging

    Hendra virus (HeV) is a pleomorphic virus belonging to the Paramyxovirus family. Our long-term aim is to understand the process of assembly of HeV virions. As a first step, we sought to determine the most appropriate cell culture system with which to study this process, and then to use this model to define the morphology of the virus and identify the site of assembly by imaging key virus encoded proteins in infected cells.
    Read article
  • Dry Ultrathin Sectioning Combined With High Pressure Freezing

    We have used cultured UMR106-01 osteoblastic cells to investigate the process of bone mineralization. UMR106-01 cells as well as primary calvarial bone cells assembly spherical extracellular supramolecular protein-lipid complexes, termed biomineralization foci (BMF), in which the first crystals of hydroxyapatite mineral are deposited (Midura et al., 2004; Wang et al., 2004). A major difference between these culture models is the speed with which mineralization occurs, ranging from 12–16 days after plating for primary osteoblastic cells to 88 h for UMR106-01 cells.
    Read article
  • How to Study Protein Recruitment to DNA Lesions by a Combination of UV Laser and White Light Laser

    Understanding how DNA lesions are optimally repaired is of functional significance, especially from the view of genome karyotype stability.
    Read article
  • Cell Cultures and Laser Microdissection

    Many of the discoveries that are now being made in cell division and differentiation, the relationships between single cells and cell organelles, treatments of cells with pharmaceutic substances, etc. would not be possible without live cell cultures. Allowing morphological and biochemical observations of single cells under different experimental conditions, they provide a unique source of information.
    Read article
  • Organotypic Cerebellar Cultures: Apoptotic Challenges and Detection

    Organotypic cultures of neuronal tissue were first introduced by Hogue in 1947 and have constituted a major breakthrough in the field of neuroscience. Since then, the technique was developed further and currently there are many different ways to prepare organotypic cultures. The method presented here was adapted from the one described by Stoppini et al. for the preparation of the slices and from Gogolla et al. for the staining procedure.
    Read article