Contact & Support

Coating

RSS feed
  • Drosophila larvae - Sample Preparation for Cryo-SEM

    Application Note for Leica EM ACE900 - Drosophila larvae were sandwiched between two 3 mm aluminum slit carriers with the 100 μm cavities facing each other and high-pressure frozen with a Leica EM HPM100. No ethanol as synchronization media was used, 1-hexadecene was used as filler. The wholes of the slit carriers were filled with filter tips dipped in 1-hexadecene to keep the carrier sandwich complete after freezing.
    Read article
  • Giardia lamblia - Sample Preparation for Cryo-SEM

    Application Note for Leica EM ACE900 - A 100 mesh copper grid (12 um thickness) was dipped into a concentrated Giardia suspension and sandwiched between two flat 3 mm aluminum specimen carriers with scratched surfaces. Subsequently, the sandwich was transferred to the widened hole of a middle plate (3.1 mm diameter). A 50 um spacer ring was added on top and the specimen immediately frozen with an HPM100 high-pressure freezing machine without using alcohol as synchronization fluid.
    Read article
  • Carbon Coating for Polymeric Materials

    Application Note fo Leica EM ACE600 - A solid understanding of polymer property-structure relationships is critical to improve and shorten development routes to new products. A direct way to determine correlations between structure and mechanical properties is provided by electron microscopy. Electron microscopy techniques have an important advantage over other methods, as they can provide local information at high spatial resolution. However, a major problem with polymers is their inherent lack of contrast.
    Read article
  • High-Resolution Carbon Coating: How much Carbon is too much?

    Application Note for Leica EM ACE600 - Carbon support films are routinely used for high resolution TEM. Thickness is one of the main criteria to assess its usefulness for a particular experiment. Within that respect graphene (oxide) layers are frequently used. However, charge dissipation and mechanical stability towards high probe currents and high voltages, including long term acquisition protocols are equally important.
    Read article
  • Each Atom Counts: Protect Your Samples Prior to FIB Processing

    Application Note for Leica EM ACE600 - Focused ion beam (FIB) technology has become an indispensable tool for site-specific TEM sample preparation. It allows to extract electron transparent specimens with nanometer precision using a focused Ga+ ion beam.
    Read article
  • Tobacco Leaf - Critical Point Drying Protocol for SEM

    Application Note for Leica EM CPD300 - Critical point drying of tobacco leafs with subsequent platinum coating and SEM analysis.
    Read article
  • Nematode E. dianae - Critical Point Drying Protocol for SEM

    Application Note for Leica EM CPD300 - Critical point drying of nematode Eubostrichus dianae to detect the ectosymbiotic bacteria layer with subsequent gold coating ans SEM analysis.
    Read article
  • Wall Cress Pod Protocol - Critical Point Drying of Arabidopsis thaliana for SEM

    Application Note for Leica EM CPD300 - Critical point drying of wall cress (Arabidopsis thaliana) pod with subsequent gold coating and SEM analysis.
    Read article
  • Bacteria Protocol - Critical Point Drying of E. coli for SEM

    Application Note for Leica EM CPD300 - Critical point drying of E. coli with subsequent platinum / palladium coating and SEM analysis. Sample was inserted into a filter disc (Pore size: 16 - 40 μm) and placed into the filter discs and porous pots holder. Cultivate fungi and bacteria on agar containing growth medium for 3 days.
    Read article
  • Thin Metal Foils with Coatings - Sample Preparation for SEM

    Application Note for Leica EM RES102 - Thin foils are mostly unstable because of their thickness of a few microns. This makes it difficult to do slope cutting without any protection of the sample. A common realisation to protect the sample surface is by sticking a cover glass on top of the sample. Another issue is cutting the foils before ion milling. The sample edge should be flat and sharp without any broken areas. A razor blade is mostly the best solution. A protected sample can salso be sawed with a wire saw.
    Read article
  • Ultra-thin Carbon Support Films for Improved STEM-EELS Analysis of Nanoparticles

    Application Note for Leica EM ACE600 - Recent developments in aberration corrected transmission electron microscopes as well as further improvements in monochromaters and spectrometers have pushed the attainable energy resolution for Electron energy loss spectroscopy (EELS) to 100 meV and beyond. STEM-EELS of individual nanomaterials can be challenging due the necessity of a support film.
    Read article
  • Ways to Reveal More from your Samples: Ultra-Thin Carbon Films

    Application Note for Leica EM ACE600 - Much of the battle involved in obtaining good transmission electron microscopy data is in the specimen preparation itself. Even though some nanomaterials are already electron transparent (e.g. nanoparticles and proteins) and often do not require further thinning procedures, they need to be dispersed onto thin support films.
    Read article
  • Wrinkled Giant Hyssop Leaf Protocol

    Application Note for Leica EM CPD300 - Critical point drying of wrinkled giant hyssop leaf with subsequent gold coating and SEM analysis.
    Read article
  • Black Mould Protocol

    Application Note for Leica EM CPD300 - Critical point drying of Black mould (Aspergilus niger) with subsequent platinum / palladium coating and SEM analysis to detect conidiospores. Sample was inserted into a filter disc (Pore size: 16 - 40 μm) and placed into the filter discs and porous pots holder.
    Read article
  • Cryo-SEM Imaging of Latex Paint

    Application Note for Leica EM VCT100, Leica EM ACE600 - A thin layer of latex paint was spread on a clean, scored, silicon chip. The sample was immediately plunge frozen in liquid ethane and transferred under LN2 to the Leica EM VCT100 loading station where it was placed in the customized sample holder.
    Read article
  • Inspection of Multilayer Coating in the Automotive Industry

    Today’s automotive industry use a variety of decorative and functional treatment to improve the vehicles surfaces. Traditional quality control methods to inspect these multilayer samples have proven to be extremely time-consuming and bear the risk of missing defects. A new approach combining a target surface system and a light microscope offers new possibilities of speed and reliability. F. Javier Ruiz Balbas, Laboratory Manager at Atotech Spain, explains his experiences with the system.
    Read article
  • Human Blood Cells Protocol

    Application Note for Leica EM CPD300 - Life Science Research. Species: Human (Homo sapiens) Critical point drying of human blood with subsequent platinum / palladium coating and SEM analysis.
    Read article
  • High Pressure Freezing with Light Stimulation

    Sun screen lotion was carefully filled in the 100 μm incision of a 3 mm copper/gold plated flat carrier and covered with 3 mm sapphire disk. The sun screen lotion sample was then high pressure frozen with a Leica EM ICE with and subsequently without light stimulation. The light stimulated samples were exposed to a UV light for 500 milliseconds.
    Read article
  • Electron Microscopy Sample Preparation: “The Future is Cold, Dynamic and Hybrid”

    In 2014, the renowned Electron Microscopy for Materials Science (EMAT) research lab at the University Antwerp, Belgium, and Leica Microsystems started a fruitful collaboration to establish a Leica Reference Site in Antwerp. This site, officially opened in July 2014, is dedicated to specimen preparation for electron microscopy in materials science with a special focus on ion beam milling and recently also on carbon coating. In this interview Prof Gustaf van Tendeloo, Director of EMAT, and Frédéric Leroux, TEM specimen preparation specialist, talk about research topics at EMAT, how the Leica reference site has evolved, and future trends for EM sample preparation.
    Read article
  • How to Clean a Coater

    Coating of samples is required in the field of electron microscopy to enable or improve the imaging of samples. Compared to the traditional coater design, all parts of a Leica EM ACE Coater can be individually removed and cleaned or, if special cleanliness is needed, even exchanged for spare parts.
    Read article
  • Brief Introduction to Freeze Fracture and Etching

    Freeze fracture describes the technique of breaking a frozen specimen to reveal internal structures. Freeze etching is the sublimation of surface ice under vacuum to reveal details of the fractured face that were originally hidden. A metal/carbon mix enables the sample to be imaged in a SEM (block-face) or TEM (replica). It is used to investigate for instance cell organelles, membranes, layers and emulsions.
    Read article
  • Characterization of Thin Films Using High Definition Confocal Microscopy

    Thin film characterization technologies are in high demand, given the wide-spread use of coatings in all engineering and science fields. The properties of thin films can vary dramatically, i.e. thickness, optical and electrical properties, hardness, etc., that is difficult to find a general purpose characterization technique.
    Read article
  • Brief Introduction to Coating Technology for Electron Microscopy

    Coating of samples is required in the field of electron microscopy to enable or improve the imaging of samples. Creating a conductive layer of metal on the sample inhibits charging, reduces thermal damage and improves the secondary electron signal required for topographic examination in the SEM.
    Read article