Contact & Support

DNA

RSS feed
  • Laser Microdissection Publication List

    This monthly updated reference list demonstrates the major application fields for laser microdissection in life science research.
    Read article
  • Video: Genome Engineering with CRISPR-Cas9

    Jennifer Doudna tells the story of how studying the way bacteria fight viral infection turned into a genomic engineering technology that has transformed molecular biology research. In 2013, Doudna and her colleagues developed the CRISPR-Cas9 gene expression system that, when introduced into animal cells, makes site-specific changes to intact genomes. CRISPR-Cas9 is more precise, more efficient, and less expensive than other genome editing tools and, as a result, has facilitated a wide range of studies that were previously unachievable.
    Read article
  • Video: Genome Editing with CRISPR-Cas9

    Jennifer Doudna tells the story of how studying the way bacteria fight viral infection turned into a genomic engineering technology that has transformed molecular biology research. In 2013, Doudna and her colleagues developed the CRISPR-Cas9 gene expression system that, when introduced into animal cells, makes site-specific changes to intact genomes. CRISPR-Cas9 is more precise, more efficient, and less expensive than other genome editing tools and, as a result, has facilitated a wide range of studies that were previously unachievable.
    Read article
  • Five Big Mysteries about CRISPR’s Origins

    Francisco Mojica was not the first to see CRISPR, but he was probably the first to be smitten by it. He remembers the day in 1992 when he got his first glimpse of the microbial immune system that would launch a biotechnology revolution. He was reviewing genome-sequence data from the salt-loving microbe Haloferax mediterranei and noticed 14 unusual DNA sequences, each 30 bases long.
    Read article
  • Webinar: Imaging CRISPR

    CRISPR has become one of the biologist’s favorite ways for deleting, replacing, or editing DNA, and much of the conversation about CRISPR-Cas9 has revolved around its potential for gene editing in health and disease. This webinar will showcase how CRISPR has also begun to revolutionize our understanding of how genomes work and will discuss the potential of CRISPR imaging tools to study genetic elements within living cells. Two leaders in this field, Gene Yeo from UCSD and Bo Huang from UCSF, discuss techniques, technology, and insights on CRISPR imaging.
    Read article
  • Gene Editing with CRISPR/Cas9 - Breakthrough in Genome Engineering

    The CRISPR/Cas9 system is one of several different bacterial systems for defense against viral attacks. It consists of two main components. One is a small piece of RNA which binds to the viral target sequence via Watson-Crick base pairing. It serves as a marker for the foreign nucleic acid. The second component is the Cas9 protein. It binds to the marked sequence and cuts it due to its nuclease activity. Because the base pairing RNA can be synthesized easily and then used to determine a target region, researchers have utilized this system in the laboratory for genome editing.
    Read article
  • Practical Guide for Excellent GSDIM Super-Resolution Images

    Do you know that most protists and bacteria lack in one feature that each of our body cell has? Our cells are touch and communicate with one another. They send and receive a variety of signals that coordinate their behavior to act together as a functional multicellular organism. Exploring the way of cellular communication and the ways how the cell surface interacts to organize tissues and body structures is of great interest. Kees Jalink and his team of scientists at the Netherlands Cancer Institute (NKI) in Amsterdam obtained new scientific insights into the molecular architecture of hemidesmosomes, cytoskeletal components, cell surface receptors and vesicular proteins with the help of Ground-State-Depletion (GSD)/ dSTORM microscopy. In this interview, Kees Jalink comments on their developments in imaging chambers, buffer conditions and image analysis to get the perfect super resolution image.
    Read article
  • Abstracts of the 6th European Super-Resolution User-Club Meeting

    The 6th European Super-Resolution User Club Meeting was held in collaboration with Dr. Timo Zimmermann, CRG, and Dr. Pablo Loza-Alvarez, ICFO, Barcelona. According to the founding principle of the club of keeping close to science, both imaging facilities at the CRG and the ICFO opened their doors to the User Club members, allowing them to explore exciting super-resolution and and nanoscopy applications. The meeting agenda covered highly relevant talks around this year’s central theme “Core Facilities and Super-Resolution Microscopy”, as well as plenty of opportunities to network amongst super-resolution users from different European countries. Here we present the abstracts of the talks held during the meeting.
    Read article
  • Webinar: Laser Microdissection in Cancer Research – Mutation Analysis Workflow with Pure Cancer Material

    Cancer can affect various organs and is caused by mutations of the DNA. A prerequisite, to explore and understand underlying gene-mutations involved in the development of a definite type of cancer, is the extraction of pure sample material, which is challenging. In this webinar, we will present how to extract 100% pure cancer tissue for DNA analysis with laser microdissection (LMD). Using tissue samples from human kidney cancer patients as an example, this webinar will provide an overview of the practical considerations when preparing a workflow to obtain highly pure material with the LMD microscope for further molecular analysis.
    Read article
  • Video Talk: CRISPR-Cas – From a Bacterial Adaptive Immune System to a Genome Engineering Tool

    The CRISPR-Cas system was originally discovered as an adaptive immune system of bacteria and archaea to protect against viral attack. During this talk, given at Leica Microsystems in Wetzlar, Dr. Lennart Randau, MPI Marburg, presents this simple and fascinating system in detail. Furthermore, he introduces the adaption of the CRISPR-Cas system into a potent molecular biology tool, which is used heavily for genome editing. In addition to its influence on molecular biology, meanwhile the Cas9 nuclease also stimulates microscopy techniques e.g. to fluorescently label genomic loci in living cells.
    Read article
  • Cross-strand Binding of TFAM to a Single mtDNA Molecule Forms the Mitochondrial Nucleoid

    Scientists from three Max Planck Institutes have gained fundamental insights into the organization of mitochondrial DNA (mtDNA). The researchers observed in high-resolution images gained with nobel prize-winning microscopy techniques that single copies of mtDNA are packaged by a specialized protein into slightly elongated structures of circa 100 nm in length.
    Read article
  • Localization of HDAC1 Using Super-Resolution STED Microscopy

    Here we show staining of HDAC1 in cancer tissue and epidermoid carcinoma cells. These results clearly show that the use of appropriate validated antibodies and STED microscopy are important tools to study subcellular structures beyond the diffraction limit correcting ill-defined images. This is critical in co-localization studies of proteins inside cells.
    Read article
  • Immunotherapy to Combat Cancer: "Sleeping Beauty" – DNA Plasmid-based Gene Transfer System to Modify T Cells

    Fighting cancer is a major goal of present-day medicine. So far mainly surgery, chemotherapy or radiation therapy are utilized to extinguish cancerous tissue, or at least set limits to it. Interestingly the human immune system has effective potential to fight cancer cells. Typically it reacts on parasitic, viral or bacterial infections. Thereby T-cells help to destroy infested cells after binding them via their specific antigen receptor.
    Read article
  • Influence of Tissue and Plant Species in the Trafficking of a Recombinant Protein in Plant Cells

    The development of recombinant DNA technology has allowed the use of plants for the production of biopharmaceuticals. In contrast to other production platforms, plants are unexpensive, easy to scale up and lack human pathogens. Moreover, because plants are eukaryotes they can process and modify complex human proteins.
    Read article
  • Defect Transport Mechanism Leads to Shortened Chromosome Ends

    Scientists at the University of Göttingen have deciphered the biogenesis of an enzyme complex whose role is to ensure that the ends of chromosomes are not shortened during the cell division process and that the genetic material is fully maintained. The results were published in Cell Reports magazine.
    Read article
  • Glycerol Spraying/Platinum Low Angle Rotary Shadowing of DNA with the Leica EM ACE600 e-beam

    Glycerol spraying/low angle rotary shadowing (Aebi and Baschong, 2006) is a preparation technique used in biology to visualize structures yielding insufficent contrast with other techniques, due to their small diameter. This method is commonly used for specimens which include proteins with coiled coil domains or DNA.
    Read article
  • Genomic Survey, Gene Expression Analysis and Structural Modeling Suggest Diverse Roles of DNA Methyltransferases in Legumes

    DNA methylation plays a crucial role in development through inheritable gene silencing. Plants possess three types of DNA methyltransferases (MTases), namely Methyltransferase (MET), Chromomethylase (CMT) and Domains Rearranged Methyltransferase (DRM), which maintain methylation at CG, CHG and CHH sites. DNA MTases have not been studied in legumes so far. Here, we report the identification and analysis of putative DNA MTases in five legumes, including chickpea, soybean, pigeonpea, Medicago and Lotus. MTases in legumes could be classified in known MET, CMT, DRM and DNA nucleotide methyltransferases (DNMT2) subfamilies based on their domain organization.
    Read article
  • Every Clue Counts – Forensics Inconceivable Without Microscopy

    There is no crime without clues. They may be obvious, like a cartridge case at the scene of the crime or clear signs of crowbar damage on a door. But sometimes, clues are microscopically small. Besides the classic fingerprints, perpetrators also leave hairs or fiber traces.
    Read article
  • Molecular Developmental Biology: Norwegian Marine Research Scientists Solve the Mysteries of Evolution

    The human nervous system is an infinitely complex network consisting of some 100 billions of neurons. It is the result of many-faceted evolutionary processes spanning millions of years which, like the development of other organ systems, have been little researched so far.
    Read article
  • Mitochondrial DNA Molecules are Packaged Individually

    At the Max Planck Institute for Biology of Ageing in Cologne founded in 2008, three departments are working on the molecular, physiological and evolutionary mechanisms of the ageing of cells, tissue and organisms. The long-term aim of the research is to help people age more healthily. Here, Dr. Christian Kukat from the department of Professor Nils-Göran Larsson is examining the role played by mitochondria in the ageing process. In close collaboration with Dr. Christian Wurm from the research group of Professor Stefan Jakobs at the Max Planck Institute for Biophysical Chemistry in Göttingen and researchers at the University of Gothenburg, Sweden, they harnessed super-resolution STED microscopy to find out new and surprising facts about the mitochondrial nucleoid.
    Read article
  • Virtual Symposium: The Cell Landscape

    In recent years, new methods and techniques aimed at deciphering the inner workings of cells have provided unique insights, and changed the way we think about, as well as approach, modern cell biology research. With these advances in mind, the 2012 BioTechniques Virtual Symposium will focus directly on the latest approaches being used to characterize cell function and phenotype.
    Read article
  • How to Study Protein Recruitment to DNA Lesions by a Combination of UV Laser and White Light Laser

    Understanding how DNA lesions are optimally repaired is of functional significance, especially from the view of genome karyotype stability.
    Read article
  • Applications of Laser Microdissection

    Laser microdissection and laser micromanipulation are suitable for gaining a differentiated insight into the function of genes and proteins, and are used for a wide range of applications in neurobiology and immunology as well as in the developmental and cell biology of animal and plant organisms.
    Read article
  • Mutagenesis and Functional Analysis of Ion Channels Heterologously Expressed in Mammalian Cells

    We will demonstrate how to study the functional effects of introducing a point mutation in an ion channel. We study G protein-gated inwardly rectifying potassium (referred to as GIRK) channels, which are important for regulating the excitability of neurons. There are four different mammalian GIRK channel subunits (GIRK1-GIRK4) – we focus on GIRK2 because it forms a homotetramer.
    Read article
  • The Mitochondrial Hypothesis of Ageing

    Why do we grow old? Research scientists have been looking for an answer to this question for many years – particularly against the background of the increase in neurodegenerative diseases among older people such as Morbus Parkinson.
    Read article
  • Forensic Detection of Sperm from Sexual Assault Evidence

    The impact of modern scientific methods on the analysis of crime scene evidence has dramatically changed many forensic sub-specialties. Arguably one of the most dramatic examples is the impact of molecular biology on the analysis of biological evidence.
    Read article