Contact & Support

Grains

RSS feed
  • Free Webinar On-Demand: Analyze grain size on microstructures the way you need

    Grain size plays an essential role in the mechanical properties of materials. Learn how to overcome problems in sample preparation and how to analyze different materials like, steel, aluminium, titanium, copper and ceramics.
    Read article
  • Surface Modification of ZnAg Sample - Sample Preparation for SEM

    Application Note for Leica EM RES102 - By means of cleaning, polishing and contrast enhancement a soft ZnAg sample should be prepared to obtain information concerning the grain structure and interfaces of the sample. The sample is contaminated after mechanical polishing. There are still some scratches on the surface. Grain structure is almost invisible.
    Read article
  • Cleaning of Smeared Sample Surfaces - Sample Preparation for SEM

    Application Note for Leica EM RES102 - Mechanical polishing of soft materials or hard / soft material combinations is tricky. The mechanical polishing process leads very often to smearing of the soft material. The smeared material covers the surface and fills small pores or holes. Grain structures, interfaces and other structural details can be masked. An additional ion milling step with milling angles between 10° C and 15° C with respect to the sample surface can remove or reduce the contamination.
    Read article
  • Ceramics - Sample Preparation for TEM

    Application Note for Leica EM RES102 - Ceramic samples are mostly very brittle, and are therefore very difficult to thin mechanically to a low starting thickness for ion beam milling. The ion beam milling of insulators often leads to static charging of the surface of the sample. This, in turn, reduces the sputter rate. When using the Ti standard holder (standard TEM holder), however, sufficient secondary electrons are created by the ion beam also falling on the sample holder to largely compensate for the static charging.
    Read article
  • Metallography – an Introduction

    Metallography is the study of the microstructure of all types of metallic alloys. It can be more precisely defined as the scientific discipline of observing and determining the chemical and atomic structure and spatial distribution of the constituents, inclusions or phases in metallic alloys. By extension, these same principles can be applied to the characterization of any material.
    Read article
  • Metallography with Color and Contrast

    The examination of microstructure morphology plays a decisive role in materials science and failure analysis. There are many possibilities of visualizing the real structures of materials in the light microscope. The image samples shown in this article demonstrate the information potential of some of the techniques used.
    Read article
  • Steel – the All-Rounder That Has to Pass Many Tests

    Steel is a real all-rounder. However, each application requires a specifi c sort of steel grade. Without steel there would be no Olympic stadiums, wind energy plants, bridges, skyscrapers, trains, planes, cars, razor blades or knives for medical and home use – at least, not of the quality and design we know today. Buderus Edelstahl GmbH in Wetzlar, Germany is one of the world’s top producers of special steel.
    Read article