Contact & Support

Multicolor

RSS feed
  • Multiphoton Microscopy – a Satisfied Wish List

    The colorful picture shows colon tumor cells, fluorescently labelled and lineage traced from a multicolor tracer. The gray color codes for the second harmonic generation (SHG) signal from Collagen 1. Lineage traced tumor cells are shown in magenta, blue, green, yellow and red. All channels were recorded with two-photon excitation, using the SP8 DIVE by Leica Microsystems. Sample and image were kindly provided by J. van Rheenen, H. Snippert, Utrecht (the Nederlands,) and I. Steinmetz, Leica Microsystems Mannheim.
    Read article
  • Mission Impossible Accomplished: Tunable Colors for Non-descanning Detection

    Leica Microsystems’ 4Tune detector, the key component of the SP8 DIVE Deep In Vivo Explorer, provides spectrally tunable image recording with non-descanning detection. An innovative solution for multiparameter multiphoton microscopy. The colorful image on the right shows multiphoton microscopy of an unstained mouse skin section acquired using the 4Tune detector. The green color codes for autofluorescence of muscle tissue. Red shows second harmonic generation of fibers upon illumination with 900 nm. The blue pattern is generated by third harmonic generation at lipid boundaries from illumination at 1230 nm.
    Read article
  • Laser Beam Shaping for Multicolor Multiphoton Microscopy

    Multiphoton Microscopy is one of the current hot topics in life science research. The new Leica TCS SP8 DIVE from Leica Microsystems presents a series of beneficial new innovations, including a free tunable non-descanning detector and an ingenious beam manipulating device VBE. The variable beam expander offers free tuning of both beam diameter and axial IR-correction for up to four IR beams simultaneously.
    Read article
  • Five Questions Asked: Prof. Dr. Jacco van Rheenen speaks about the most important considerations when imaging deep into mouse tissue

    When operating a confocal microscope, or when discussing features and parameters of such a device, we inescapably mention the pinhole and its diameter. This short introductory document is meant to explain the significance of the pinhole for those, who did not want to spend too much time to dig into theory and details of confocal microscopy but wanted to have an idea about the effect of the pinhole.
    Read article
  • HyVolution – the Smart Path to Confocal Super-Resolution

    Super-resolution refers to any device or method that can resolve better than the classical Abbe limit. Apart from infinite super-resolution techniques such as STED (stimulated emission depletion) and SMLM (single-molecule localization methods) that can theoretically resolve to any detail, there are also methods for limited super-resolution. Here we present HyVolution by Leica, which merges optical super-resolution and computational super-resolution. The optical part is provided by confocal microscopy, and the computational part by deconvolution. Lateral resolution of 140 nm is demonstrated. HyVolution offers multiple fluorescence recording in truly simultaneous mode.
    Read article
  • Webinar: Light Sheet Imaging for Fast 3D Live Cell and Tissue Imaging

    In recent years, light sheet microscopy has emerged as the biological imaging modality of choice to achieve high performance in imaging speed, resolution, and penetration depth – all with minimal photo-induced damage.
    Read article
  • "Leica is always flexible and dynamic" - Interview with Audrey Salles, Pasteur Institute, Paris

    Audrey Salles is a specialist for confocal and super-resolution microscopy at Pasteur Institute, Imagopole, PFID, Paris, France. Her research interests are cytokine signaling and skeleton organization of human TCD4-cells.
    Read article
  • The White Confocal – Spectral Gaps Closed

    This article summarizes the development and differences in design and functionality of confocal technology as far as spectral properties are concerned, from classical filter-based excitation and emission color selection to fully flexible spectral excitation and emission tuning. All three major components: light source with excitation color selection, beam splitting for incident illumination and detector emission filtering have been completely transformed.
    Read article
  • The White Confocal

    Modern biomedical research is currently dominated by imaging and measuring with optical microscopes. One branch of the microscopy technology is confocal microscopy. For correlation purposes, multiparameter fluorescence imaging is particularly of unique interest. This article is concerned with the spectral performance of the various modules in a confocal point-scanning microscope ("True Confocal System"), and how these modules have evolved to allow for tunability and flexibility in excitation and emission collection in multiple bands (channels).
    Read article
  • White Light Laser

    The perfect light source for confocal microscopes in biomedical applications has sufficient intensity, tunable color and is pulsed for use in lifetime fluorescence. Furthermore, it should offer means to avoid reflection of excitation light, and the coupling into the beam path must be efficient and homogeneous throughout the full visible spectrum. Such a source has been invented and implemented: the white light laser in combination with acousto-optical beam splitting.
    Read article
  • Beam Splitting

    Fluorescence Microscopy usually employs incident light illumination. This requires a device that directs the light for illumination into the sample and transmits the light emitted by the sample to the detection system. In the past, various types of mirrors were the only option. Today, the acousto optical beam splitter serves best for the task.
    Read article
  • Confocal Excitation

    Fluorescence excitation needs specifically colored light. In confocal microscopy, multiline lasers or laser batteries are classically used. This requires devices that pick the requested lines fitting the currently employed fluorochromes. Intensity control is a second task that must be accomplished.
    Read article
  • Neuroscience and Microscopy

    Neurobiology, the science of nerves and the brain, has mainly been driven forward in the last 200 years by microscopic investigations. The structures of cellular and subcellular structures, interaction and the three-dimensional assembly of neurons were made visible by various microscopy techniques. The optical microscope is also a necessary tool for visualizing micropipettes in electrophysiological measurements. Thirdly, many types of functional imaging are performed by means of optical microscopy.
    Read article
  • Choose Your Excitation Wavelength

    Although time correlated single photon counting (TCSPC) is the method of choice for fluorescence lifetime quantification, it requires dedicated instrumentation including a pulsed laser source, a photon counting card, and a fast detector.
    Read article
  • What is an OPO?

    Multiphoton microscopy with OPO: imaging with excitation wavelengths up to 1.300 nm. Because light scattering is dependent on the wavelength, better tissue penetration can be achieved by using longer excitation wavelengths. This is where excitation with infrared light, two-photon processes, and the OPO (optical parameter oscillator) can dramatically improve image quality.
    Read article
  • Confocal Nanoscopy Goes Multicolor

    Scientists strive to understand the architecture of life. They want to learn how biological structures are arranged in respect to one another. Multicolor superresolution imaging allows fundamental questions to be addressed by far-field fluorescence microscopy in unprecedented detail.
    Read article