Contact & Support

Multiphoton Imaging

RSS feed
  • Multiphoton Microscopy – a Satisfied Wish List

    The colorful picture shows colon tumor cells, fluorescently labelled and lineage traced from a multicolor tracer. The gray color codes for the second harmonic generation (SHG) signal from Collagen 1. Lineage traced tumor cells are shown in magenta, blue, green, yellow and red. All channels were recorded with two-photon excitation, using the SP8 DIVE by Leica Microsystems. Sample and image were kindly provided by J. van Rheenen, H. Snippert, Utrecht (the Nederlands,) and I. Steinmetz, Leica Microsystems Mannheim.
    Read article
  • Mission Impossible Accomplished: Tunable Colors for Non-descanning Detection

    Leica Microsystems’ 4Tune detector, the key component of the SP8 DIVE Deep In Vivo Explorer, provides spectrally tunable image recording with non-descanning detection. An innovative solution for multiparameter multiphoton microscopy. The colorful image on the right shows multiphoton microscopy of an unstained mouse skin section acquired using the 4Tune detector. The green color codes for autofluorescence of muscle tissue. Red shows second harmonic generation of fibers upon illumination with 900 nm. The blue pattern is generated by third harmonic generation at lipid boundaries from illumination at 1230 nm.
    Read article
  • Laser Beam Shaping for Multicolor Multiphoton Microscopy

    Multiphoton Microscopy is one of the current hot topics in life science research. The new Leica TCS SP8 DIVE from Leica Microsystems presents a series of beneficial new innovations, including a free tunable non-descanning detector and an ingenious beam manipulating device VBE. The variable beam expander offers free tuning of both beam diameter and axial IR-correction for up to four IR beams simultaneously.
    Read article
  • Five Questions Asked: Prof. Dr. Jacco van Rheenen speaks about the most important considerations when imaging deep into mouse tissue

    When operating a confocal microscope, or when discussing features and parameters of such a device, we inescapably mention the pinhole and its diameter. This short introductory document is meant to explain the significance of the pinhole for those, who did not want to spend too much time to dig into theory and details of confocal microscopy but wanted to have an idea about the effect of the pinhole.
    Read article
  • Human NK Cell Development Requires CD56-mediated Motility and Formation of the Developmental Synapse

    While distinct stages of natural killer (NK) cell development have been defined, the molecular interactions that shape human NK cell maturation are poorly understood. Here we define intercellular interactions between developing NK cells and stromal cells which, through contact-dependent mechanisms, promote the generation of mature, functional human NK cells from CD34+ precursors. We show that developing NK cells undergo unique, developmental stage-specific sustained and transient interactions with developmentally supportive stromal cells, and that the relative motility of NK cells increases as they move through development in vitro and ex vivo.
    Read article
  • Multiphoton Microscopy Publication List

    Multiphoton Microscopy is an advanced technique for imaging thick samples. Applications range from the visualization of the complex architecture of the whole brain to the study of tumor development and metastasis or the responses of the immune system in living animals. On this regularly updated reference list you can find selected publications on reseach using multiphoton microscopy.
    Read article
  • Clearing of Fixed Tissue: A Review from a Microscopist’s Perspective

    Chemical clearing of fixed tissues is becoming a key instrument for the three-dimensional reconstruction of macroscopic tissue portions, including entire organs. Indeed, the growing interest in this field has both triggered and been stimulated by recent advances in high-throughput microscopy and data analysis methods, which allowed imaging and management of large samples.
    Read article
  • Smart Control for Resonant Galvo Scanners

    High time-resolution confocal microscopy (HTRCLSM) requires fast scanning devices. Whereas non-resonant galvo scanners allow full position control, but only at slow speed, resonant scanners allow ~25,000 lines per second, but offer much less positioning freedom. To still allow zoom and pan functions, several approaches have been tried, with varying success. The Leica confocal microscopes od the TCS series use a very smart solution that enables stepless zooming with short switching times.
    Read article
  • Tracking Glomerular Fate Over Long Time Distances

    Multi-channel multiphoton microscopy with dedicated optics for CLARITY. The glomerular filtration barrier (GFB) is a complex spatial structure within the kidney glomerulis where ultrafiltration takes place. Podocytes are critical elements of the GFB and take part in the filtration process. They have been shown to be involved in the development of kidney diseases. However, due to technical limitations, the mechanism of glomerular pathology is not well understood.
    Read article
  • Direct In Vivo Evidence for Tumor Propagation by Glioblastoma Cancer Stem Cells

    Cancer research using multiphoton microscopy. High-grade gliomas (World Health Organization grade III anaplastic astrocytoma and grade IV glioblastoma multiforme), the most prevalent primary malignant brain tumors, display a cellular hierarchy with self-renewing, tumorigenic cancer stem cells (CSCs) at the apex. While the CSC hypothesis has been an attractive model to describe many aspects of tumor behavior, it remains controversial due to unresolved issues including the use of ex vivo analyses with differential growth conditions.
    Read article
  • Principles of Multiphoton Microscopy for Deep Tissue Imaging

    Basics of multiphoton microscopy. This interactive tutorial explains the principles of multiphoton microscopy for deep tissue imaging. Multiphoton microscopy uses excitation wavelengths in the infrared taking advantage of the reduced scattering of longer wavelengths. This makes multiphoton imaging the perfect tool for deep tissue imaging in thick sections and living animals.
    Read article
  • Webinar: Principles and Applications of Multiphoton Imaging

    Basics of multiphoton microscopy. The advent of multiphoton microscopy has enabled researchers to image deeper, with greater resolution and less background, leading to new scientific insights into topics ranging from stem cell biology to the cellular effects of human disease. In this webinar, you will learn about the latest approaches and applications of multiphoton imaging.
    Read article
  • Webinar: The Solution for Deep Imaging

    Imaging of thick specimen using multiphoton microscopy. Multiphoton microscopy is the method of choice for non-invasive deep-penetration fluorescence microscopy of thick highly scattering samples. Good results have already been obtained with a diversity of specimen, e.g. lymphatic organs, kidney, heart, skin and brain (slices as well as whole organs, fixed specimen as well as living cells).
    Read article
  • A New FRAP/FRAPa Method for Three-Dimensional Diffusion Measurements Based on Multiphoton Excitation Microscopy

    Quantitative measurement method based on FRAP and FRAPa using multiphoton microscopy. We present a new convenient method for quantitative three-dimensionally resolved diffusion measurements based on the photobleaching (FRAP) or photoactivation (FRAPa) of a disk-shaped area by the scanning laser beam of a multiphoton microscope. Contrary to previously reported spot-photobleaching protocols, this method has the advantage of full scalability of the size of the photobleached area and thus the range of diffusion coefficients, which can be measured conveniently.
    Read article
  • 4D Photoactivation of pa-GFP in Living Cells Using Two-Photon Excitation Laser Scanning Microscopy

    We report about two-photon activation of a photoactivatable derivative of the Aequorea Victoria green fluorescent protein (pa-GFP). This special form of the molecule increases its fluorescence intensity when excited by 488 nm after irradiation with high intensity light at 413 nm. Two-photon photoactivation produces an effective real three-dimensional (3D) localization of the molecular switching of pa-GFP in the bright state.
    Read article
  • Multi-photon Excitation Microscopy

    Advanced microscopical techique for life science: multiphoton microscopy. Multi-photon excitation (MPE) microscopy plays a growing role among microscopical techniques utilized for studying biological matter. In conjunction with confocal microscopy it can be considered the imaging workhorse of life science laboratories. Its roots can be found in a fundamental work written by Maria Goeppert Mayer more than 70 years ago. Nowadays, 2PE and MPE microscopes are expected to increase their impact in areas such biotechnology, neurobiology, embryology, tissue engineering, materials science where imaging can be coupled to the possibility of using the microscopes in an active way, too.
    Read article