Contact & Support

Neuron

RSS feed
  • Interview with Dr. Shigeki Watanabe on Research in Synaptic Membrane Dynamics

    Dr. Shigeki Watanabe, principle investigator of the department of Cell Biology at the Johns Hopkins University School of Medicine in Baltimore, held a workshop in Zürich, Switzerland on methods to study synaptic dynamics with millisecond precision. In collaboration with Dr. Andres Käch from the University of Zurich all workshop attendees enjoyed presentations and hands-on sessions on the EM ICE by Leica Microsystems with Light and Electrical Stimulation, revealing the latest developments in brain research. During this workshop Dr. Bernd Sägmüller from Leica Microsystems had the chance for an interview with Dr. Watanabe.
    Read article
  • Visualization of Membrane Dynamics with Millisecond Temporal Resolution

    Application Note for Leica EM ICE, Leica EM AFS2 - Electrical stimulation of neurons combined with high-pressure freezing allows physiological activation of synaptic activity and precise control over the time frame of the induced synaptic activity.
    Read article
  • Freeze-Fracture Replication of Pyramidal Cells

    Application Note for Leica EM HPM100 - Frozen samples (90 μm thick slices frozen by HPM100) were inserted into a double replica table and then fractured into two pieces at –130°C (after insertion of the tissue into BAF 060 the samples should be left in the chamber for 20 min to reach the –130°C).
    Read article
  • Cultured Rat Hippocampal Neurons

    Application Note for Leica EM ICE - Rat Hippocampal neurons, cultured on 50 μm thick Aclar (Aclar embedding film, EMS) for 19 days, were frozen in the 100 μm deep side of lecithin coated (detailed protocol Appendix I) type A 3 mm Cu/Au carriers (Leica) and sandwiched with the flat side of lecithin coated type B 3 mm Cu/Au carriers (Leica). No additional filler was used, only cell culture medium with the addition of Hepes buffer pH 7.2 to a final concentration of 25 mM. Samples were frozen in a high-pressure freezer (Leica EM ICE).
    Read article
  • Label-free in vivo Imaging of Myelinated Axons in Health and Disease with Spectral Confocal Reflectance Microscopy

    We report a new technique for high-resolution in vivo imaging of myelinated axons in the brain, spinal cord and peripheral nerve that requires no fluorescent labeling. This method, based on spectral confocal reflectance microscopy (SCoRe), uses a conventional laser scanning confocal system to generate images by merging the simultaneously reflected signals from multiple lasers of different wavelengths.
    Read article
  • Super-Resolution Mapping of Neuronal Circuitry With an Index-Optimized Clearing Agent

    Super-resolution imaging deep inside tissues has been challenging, as it is extremely sensitive to light scattering and spherical aberrations. Here, we report an optimized optical clearing agent for high-resolution fluorescence imaging (SeeDB2). SeeDB2 matches the refractive indices of fixed tissues to that of immersion oil (1.518), thus minimizing both light scattering and spherical aberrations.
    Read article
  • Switching Roles: The Functional Plasticity of Adult Tissue Stem Cells

    Adult organisms have to adapt to survive, and the same is true for their tissues. Rates and types of cell production must be rapidly and reversibly adjusted to meet tissue demands in response to both local and systemic challenges. Recent work reveals how stem cell (SC) populations meet these requirements by switching between functional states tuned to homoeostasis or regeneration.
    Read article
  • Axon Injury and Regeneration in the Adult Drosophila

    Neural regeneration is a fascinating process with profound impact on human health, such that defining biological and genetic pathways is of interest. Here we describe an in vivo preparation for neuronal regeneration in the adult Drosophila. The nerve along the anterior margin of the wing is comprised of ~225 neurons that send projections into the central neuropil (thorax).
    Read article
  • Video Talk by Karl Deisseroth: Optogenetics

    Optogenetics is a combination of genetics and optics to achieve a gain or loss of function of biochemical events such as action potentials in a particular neuron or tissue. Opsin genes encode proteins that receive light and give rise to ion flow. This talk gives an introduction to optogenetics followed by examples of how optogenetics is being used to study the brain.
    Read article
  • Webinar: Exploring Neurons and Synapses: Imaging Tools and Techniques

    In the coming years, considerable effort and resources will be directed at understanding the neural connections of the brain. During this webinar, we will examine many of the tools being used to study how neurons interact with one another at their synapses.
    Read article
  • Correlated Optical and Isotopic Nanoscopy

    The isotopic composition of different materials can be imaged by secondary ion mass spectrometry. In biology, this method is mainly used to study cellular metabolism and turnover, by pulsing the cells with marker molecules such as amino acids labelled with stable isotopes (15N, 13C). The incorporation of the markers is then imaged with a lateral resolution that can surpass 100 nm.
    Read article
  • Video Interview with Stephan Sigrist

    Stephan Sigrist is professor for biology at the Freie Universität Berlin in Germany. His research focus are synapses, synaptic information transfer and processing between neurons in the developing drosophila larva. His aim is to understand how synapses actually get diversified in our brains.
    Read article
  • Video Interview with Dr. Yasushi Okada

    Yasushi Okada, team leader at Riken Quantitative Biology Center in Osaka, Japan, investigates vesicular transport mechanisms in neuronal cells. As the size of transported vesicles is below 100 nm and the diameter of microtubules is about 25 nm, he uses super-resolution techniques to study the sophisticated machinery of neuronal transport.
    Read article
  • Synaptic Vesicle Recycling: Steps and Principles

    Synaptic vesicle recycling is one of the best‐studied cellular pathways. Many of the proteins involved are known, and their interactions are becoming increasingly clear. However, as for many other pathways, it is still difficult to understand synaptic vesicle recycling as a whole.
    Read article
  • Imaging Pheromone Sensing in a Mouse Vomeronasal Acute Tissue Slice Preparation

    In mice, the ability to detect pheromones is principally mediated by the vomeronasal organ (VNO). Here, an acute tissue slice preparation of VNO for performing calcium imaging is described. This physiological approach allows observations of subpopulations and/or individual neurons in a living tissue and is convenient for receptor-ligand identification.
    Read article
  • The Morbus Parkinson Puzzle

    A characteristic sign of M. Parkinson is the deterioration of dopaminergic neurons in the mid-brain, specifically in the substantia nigra (SN, black substance). Different causes and forms of this disease have been identified. In the case of the genetic familial form, for example, it has been possible to identify various genes that have a causal influence for M. Parkinson.
    Read article
  • Webinar: Super-Resolution Imaging of Neurons

    In this webinar, Daniel Choquet, Xiaowei Zhuang, and Stephan Sigrist will discuss how super-resolution imaging can elucidate the inner workings of neurons at the single-molecule and macro-molecular levels using specialized probes and optical techniques they have helped design and pioneer in the field of neuroscience.
    Read article
  • Local and Global Methods of Assessing Thermal Nociception in Drosophila Larvae

    In this article, we demonstrate assays to study thermal nociception in Drosophila larvae. One assay involves spatially-restricted (local) stimulation of thermal nociceptors while the second involves a wholesale (global) activation of most or all such neurons. Together, these techniques allow visualization and quantification of the behavioral functions of Drosophila nociceptive sensory neurons.
    Read article
  • Production of RNA for Transcriptomic Analysis from Mouse Spinal Cord Motor Neuron Cell Bodies by Laser Capture Microdissection

    High-quality total RNA has been prepared from cell bodies of mouse spinal cord motor neurons by laser capture microdissection after staining spinal cord sections with Azure B in 70% ethanol. Sufficient RNA (~40–60 ng) is recovered from 3,000–4,000 motor neurons to allow downstream RNA analysis by RNA-seq and qRT-PCR.
    Read article
  • Patch Clamp Recordings from Embryonic Zebrafish Mauthner Cells

    Mauthner cells (M-cells) are large reticulospinal neurons located in the hindbrain of teleost fish. They are key neurons involved in a characteristic behavior known as the C-start or escape response that occurs when the organism perceives a threat. The M-cell has been extensively studied in adult goldfish where it has been shown to receive a wide range of excitatory, inhibitory and neuromodulatory signals. We have been examining M-cell activity in embryonic zebrafish in order to study aspects of synaptic development in a vertebrate preparation. In the late 1990s Ali and colleagues developed a preparation for patch clamp recording from M-cells in zebrafish embryos, in which the CNS was largely intact.
    Read article
  • Capturing Neurotransmitter Receptors and Ion Channels

    Neurotransmitter receptors and ion channels in the central nervous system are localized to synaptic and extrasynaptic membrane compartments of pre- and postsynaptic elements of neurons. The impact of the activation of these proteins on synaptic integration and regulation of transmitter release depends on their precise location relative to synapses, as well as on the density and coupling of molecules in microcompartments of the cells. High-resolution qualitative and quantitative visualization of membranebound receptors and ion channels is, therefore, essential for understanding their roles in cell communication.
    Read article
  • K-ATP Channels in Dopamine Substantia Nigra Neurons Control Bursting and Novelty-induced Exploration

    Phasic activation of the dopamine (DA) midbrain system in response to unexpected reward or novelty is critical for adaptive behavioral strategies. This activation of DA midbrain neurons occurs via a synaptically triggered switch from low-frequency background spiking to transient high-frequency burst firing. We found that, in medial DA neurons of the substantia nigra (SN), activity of ATP-sensitive potassium (K-ATP) channels enabled NMDA-mediated bursting in vitro as well as spontaneous in vivo burst firing in anesthetized mice.
    Read article
  • Sharp Live Images from the Mouse Brain

    To explore the most intricate structures of the brain in order to decipher how it functions – Stefan Hell’s team of researchers at the Max Planck Institute for Biophysical Chemistry in Göttingen has made a significant step closer to this goal. Using the STED microscopy developed by Hell, the scientists have, for the first time, managed to record detailed live images inside the brain of a living mouse.
    Read article
  • Mapping Billions of Synapses with Microscopy and Mathematics

    A combination of widefield imaging techniques and image segmentation analysis enable researchers to map learning-induced functional changes in individual synapses throughout the hippocampus.
    Read article
  • Sniffing Out the Secrets of Social Behavior

    Yet we are only just beginning to understand the complexities and functional differences of the sense of smell in mammals. Prof. Marc Spehr, head of the Department of Chemosensation at RWTH Aachen University since 2009, explains his findings on the neuronal mechanisms of olfactory perception and signal processing using the mouse model. He and his team are trying to find out how substances for social interaction are perceived and how this perception generates a specific type of behavior.
    Read article
  • Exploring the Concert of Neuronal Activities

    Brain research using Confocal and Multiphoton Microscopy. Using imaging techniques such as confocal and two-photon microscopy, neuronal dendritic arborization of neurons and their synaptic interconnections can be visualized.
    Read article
  • Mutagenesis and Functional Analysis of Ion Channels Heterologously Expressed in Mammalian Cells

    We will demonstrate how to study the functional effects of introducing a point mutation in an ion channel. We study G protein-gated inwardly rectifying potassium (referred to as GIRK) channels, which are important for regulating the excitability of neurons. There are four different mammalian GIRK channel subunits (GIRK1-GIRK4) – we focus on GIRK2 because it forms a homotetramer.
    Read article
  • The Fate of Synaptic Vesicle Components upon Fusion

    Neurotransmitter release relies on the fusion of synaptic vesicles with the plasma membrane of synaptic boutons, which is followed by the recycling of vesicle components and formation of new vesicles. It is not yet clear whether upon fusion the vesicles persist as multimolecular patches in the plasma membrane, or whether they segregate into individual components.
    Read article
  • New Standard in Electrophysiology and Deep Tissue Imaging

    The function of nerve and muscle cells relies on ionic currents flowing through ion channels. These ion channels play a major role in cell physiology. One way to investigate ion channels is to use patch clamping. This method allows investigation of ion channels in detail and recording of the electric activity of different types of cells, mainly excitable cells like neurons, muscle fibres or beta cells of the pancreas. The patch clamping technique was developed by Erwin Neher and Bert Sakmann in the 1970s and 80s to study individual ion channels in living cells. In 1991 they received the Nobel Prize for Physiology and Medicine for their work. Today the patch clamping technique is one of the most important methods in the field of electrophysiology.
    Read article
  • Observing Life’s Nanostructures with STED

    The secrets of life and the causes of many diseases can only be fully explained if we understand the functions of the smallest components of organisms. Using the super high resolution STED microscope, research scientists are now able to observe cellular proteins and molecular structures measuring only a few nanometres.
    Read article