Contact & Support

Nuclear Pore Complex

RSS feed
  • Mirror-Enhanced Super-Resolution Microscopy

    Axial excitation confinement beyond the diffraction limit is crucial to the development of next-generation, super-resolution microscopy. STimulated Emission Depletion (STED) nanoscopy offers lateral super-resolution using a donut-beam depletion, but its axial resolution is still over 500 nm. Total internal reflection fluorescence microscopy is widely used for single-molecule localization, but its ability to detect molecules is limited to within the evanescent field of ~100 nm from the cell attachment surface. We find here that the axial thickness of the point spread function (PSF) during confocal excitation can be easily improved to 110 nm by replacing the microscopy slide with a mirror. The interference of the local electromagnetic field confined the confocal PSF to a 110-nm spot axially, which enables axial super-resolution with all laser-scanning microscopes.
    Read article
  • Abstracts of the 4th European Super-Resolution User-Club Meeting

    The 4th Super-Resolution User Club Meeting was held in collaboration with Christian Eggeling and the Weatherall Institute of Molecular Medicine in Oxford, UK. Here we present the abstracts of the talks and interviews with participants.
    Read article
  • Super-Resolution Microscopy Gives New Insights into Nuclear Pore Complex Organization

    The Nuclear Pore Complex (NPC) is a large complex in the nuclear membrane, representing the gate to the eukaryotic genetic makeup. Because of this outstanding function the structure of the NPC is of great interest. Anna Szymborska, scientist at the EMBL in Heidelberg, comments on her resaerch results and the potential of Ground State Depletion microscopy (GSD) for protein complex analysis in the following interview.
    Read article