Contact & Support

Protein Interaction

RSS feed
  • The Molecular Architecture of Hemidesmosomes as Revealed by Super-Resolution Microscopy

    Hemidesmosomes have been extensively studied by immunofluorescence microscopy, but due to its limited resolution, their precise organization remained poorly understood. We studied hemidesmosome organization in cultured keratinocytes by 2- and 3-color super-resolution microscopy. We observed that in the cell periphery, nascent hemidesmosomes are associated with individual keratin filaments and that β4 is distributed along rather than under keratin filaments. By applying innovative methods to quantify molecular distances, we demonstrate that the hemidesmosomal plaque protein plectin interacts simultaneously and asymmetrically with β4 and keratin.
    Read article
  • The Bif-1-Dynamin 2 Membrane Fission Machinery Regulates Atg9-Containing Vesicle Generation at the Rab11-Positive Reservoirs

    Application example of HyVolution Super-Resolution - Atg9 is a multispanning transmembrane protein that is required for autophagosome formation. During autophagy, vesicles containing Atg9 are generated through an unknown mechanism and delivered to the autophagosome formation sites. We have previously reported that Atg9-containing membranes undergo continuous tubulation and fission during nutrient starvation in a manner dependent on the curvature-inducing protein Bif-1/Sh3glb1. Here, we identify Dynamin 2 (DNM2) as a Bif-1-interacting protein that mediates the fission of Atg9-containing membranes during autophagy.
    Read article
  • Multi-protein Assemblies Underlie the Mesoscale Organization of the Plasma Membrane

    Most proteins have uneven distributions in the plasma membrane. Broadly speaking, this may be caused by mechanisms specific to each protein, or may be a consequence of a general pattern that affects the distribution of all membrane proteins.
    Read article
  • Detailed Morphological Characterisation of Hendra Virus Infection of Different Cell Types Using Super-Resolution and Conventional Imaging

    Hendra virus (HeV) is a pleomorphic virus belonging to the Paramyxovirus family. Our long-term aim is to understand the process of assembly of HeV virions. As a first step, we sought to determine the most appropriate cell culture system with which to study this process, and then to use this model to define the morphology of the virus and identify the site of assembly by imaging key virus encoded proteins in infected cells.
    Read article
  • ICln: A New Regulator of Non-Erythroid 4.1R Localisation and Function

    To optimise the efficiency of cell machinery, cells can use the same protein (often called a hub protein) to participate in different cell functions by simply changing its target molecules. There are large data sets describing protein-protein interactions ("interactome") but they frequently fail to consider the functional significance of the interactions themselves.
    Read article
  • Genomic Survey, Gene Expression Analysis and Structural Modeling Suggest Diverse Roles of DNA Methyltransferases in Legumes

    DNA methylation plays a crucial role in development through inheritable gene silencing. Plants possess three types of DNA methyltransferases (MTases), namely Methyltransferase (MET), Chromomethylase (CMT) and Domains Rearranged Methyltransferase (DRM), which maintain methylation at CG, CHG and CHH sites. DNA MTases have not been studied in legumes so far. Here, we report the identification and analysis of putative DNA MTases in five legumes, including chickpea, soybean, pigeonpea, Medicago and Lotus. MTases in legumes could be classified in known MET, CMT, DRM and DNA nucleotide methyltransferases (DNMT2) subfamilies based on their domain organization.
    Read article
  • Virtual Symposium: The Cell Landscape

    In recent years, new methods and techniques aimed at deciphering the inner workings of cells have provided unique insights, and changed the way we think about, as well as approach, modern cell biology research. With these advances in mind, the 2012 BioTechniques Virtual Symposium will focus directly on the latest approaches being used to characterize cell function and phenotype.
    Read article
  • Webinar: Imaging the Sustainable Cell

    This webinar is for any biologist interested in learning about how cells balance resources and make the decision between redirecting resources and initiating death. It will be a great opportunity to learn how the experts are studying these processes and how you can monitor and image each process.
    Read article
  • Taking the Long View

    In exploring how embryos take shape, John Wallingford has identified a key pathway involved in vertebrate development – and human disease.
    Read article
  • Fluorescence Recovery after Photobleaching (FRAP) and its Offspring

    FRAP (Fluorescence recovery after photobleaching) can be used to study cellular protein dynamics: For visualization the protein of interest is fused to a fluorescent protein or a fluorescent dye. A region of interest (ROI) can be monitored applying a high amount of light to bleach the fluorescence within the ROI. The following illumination with low light conditions provides insight into the redistribution of molecules via recovery of fluorescence.
    Read article