Contact & Support

SEM

RSS feed
  • 3-Dimensional Imaging of Macroscopic Defects in Aluminum Alloys

    The investigation of macroscale defects in aluminum (Al) alloys with a rapid 3-dimensional (3D) imaging approach is described in this report. Aluminum (Al) alloys play an important role in the production of aircraft and vehicles, as well as products in other industries. Defects present in the Al alloy used for the production of aircraft, vehicles, or other products can have a significant effect on their quality, performance, and lifetime.
    Read article
  • Contrast Enhancement of Polycrystalline Metals - Sample Preparation for SEM

    Application Note - Ion milling is a perfect alternative for chemical etching, especially for polycrystalline metals, such as copper. Ion milling can be used to increase the contrast of the grain structure and their interfaces. In contrast to chemical etching the milling process is clean, safe and easy to operate. Ion energy and milling time depend on the milling rate of the metal.
    Read article
  • Drosophila larvae - Sample Preparation for Cryo-SEM

    Application Note for Leica EM ACE900 - Drosophila larvae were sandwiched between two 3 mm aluminum slit carriers with the 100 μm cavities facing each other and high-pressure frozen with a Leica EM HPM100. No ethanol as synchronization media was used, 1-hexadecene was used as filler. The wholes of the slit carriers were filled with filter tips dipped in 1-hexadecene to keep the carrier sandwich complete after freezing.
    Read article
  • Porous Ceramics - Sample Preparation for SEM

    Application Note for Leica EM RES102 - Ceramic membrane filters with pore sizes down to a few nanometres must be investigated in cross-section with regard to the structure of the pores. The smallest pores are of special interest. In most cases, conventional grinding methods cannot be used for such problems, as the pore structure would be distorted. This applies in particular to the pores in the nanometre range.
    Read article
  • Removal of Surface Layers - Sample Preparation for SEM and TEM

    Application Note for Leica EM RES102 - Sometimes it is necessary to remove surface layers to gain access to the real surface structure. That can be a native oxide, or layers coming from the preparation process itself, like re-deposition. Depending on the layers thickness and the energy used for the cleaning process, it takes between a few seconds and half an hour. The energy depends on the milling rate of the material.
    Read article
  • Semiconductor Structures with Large Differences in Hardness - Sample Preparation for SEM

    Application Note for Leica EM RES102 - In most cases, multi-layer structures or material combinations with large differences in hardness cannot be processed with conventional polishing techniques, or can only be very poorly processed. Due to the large differences in hardness, blurring or edge-rounding occurs, which distorts the original structure. In the application example shown, we are dealing with a solder ball structure. The goal was to determine the solder structure. The use of conventional grinding and polishing techniques was not possible due to the large differences in hardness between the solder ball and other materials in the sample.
    Read article
  • Cross Sectioning of a Multilayer System - Preparation of a Perfect Sample Surface for EBSD

    Application Note for Leica EM TIC 3X - Electron Backscattered Diffraction (EBSD) is a surface technique creating a diffraction pattern (Kikuchi-bands). It can be used for crystal orientation mapping, defect studies, phase identification, grain boundary studies and morphology studies. The information depth is just a few nm. Therefore good sample preparation is very important to avoid any damage. This is very difficult in case of multilayer system with big differences in hardness.
    Read article
  • Tobacco Leaf - Critical Point Drying Protocol for SEM

    Application Note for Leica EM CPD300 - Critical point drying of tobacco leafs with subsequent platinum coating and SEM analysis.
    Read article
  • Paper Samples - Sample Preparation for SEM

    Application Note for Leica EM RES102 - A coated paper sample has been prepared with ion beam slope cutting in order to test the procedure with regard to its applicability. With the use of ion beam slope cutting a cross section of paper could be prepared. On the basis of this sample processing, it was possible to show the largely unaffected original structure of the thermally-sensitive paper in the scanning electron microscope.
    Read article
  • Nematode E. dianae - Critical Point Drying Protocol for SEM

    Application Note for Leica EM CPD300 - Critical point drying of nematode Eubostrichus dianae to detect the ectosymbiotic bacteria layer with subsequent gold coating ans SEM analysis.
    Read article
  • Cross-Sectional Preparation of Structured Semiconductor Materials for TEM

    Application Note for Leica EM RES102 - The vertical layer construction of a semiconductor structure should be examined as a TEM cross-sectional sample. In addition to the specific preparation of the desired structure, the widely different sputter rates and atomic weights of the individual components represent the level of difficulty involved with this preparation problem.
    Read article
  • Contrast Enhancement of Polished Cross Sections of Semiconductor Structures - Sample Preparation for SEM

    Application Note for Leica EM RES102 - The surfaces of polished cross sections often show fine scratches and residues of the removed material or of the abrasive material. The artefacts are strongly material-dependent, and are mostly only detectable at higher resolutions in the scanning electron microscope. A further problem arises from the fact that the ground section mostly only has low contrast, i.e., in the structures of the semiconductor materials are very difficult to discern. With the use of ion beam milling, the ground sections of semiconductor structures can be "contrasted".
    Read article
  • Wall Cress Pod Protocol - Critical Point Drying of Arabidopsis thaliana for SEM

    Application Note for Leica EM CPD300 - Critical point drying of wall cress (Arabidopsis thaliana) pod with subsequent gold coating and SEM analysis.
    Read article
  • Surface Modification of ZnAg Sample - Sample Preparation for SEM

    Application Note for Leica EM RES102 - By means of cleaning, polishing and contrast enhancement a soft ZnAg sample should be prepared to obtain information concerning the grain structure and interfaces of the sample. The sample is contaminated after mechanical polishing. There are still some scratches on the surface. Grain structure is almost invisible.
    Read article
  • Cross Sectioning of Ni/Cu on Steel for EBSD

    Application Note for Leica EM TIC 3X - Electron Backscattered Diffraction (EBSD) is a surface technique creating a diffraction pattern (Kikuchi-bands). It can be used for crystal orientation mapping, defect studies, phase identification, grain boundary studies and morphology studies. The information depth is just a few nm. Therefore a good sample preparation is very important.
    Read article
  • Bacteria Protocol - Critical Point Drying of E. coli for SEM

    Application Note for Leica EM CPD300 - Critical point drying of E. coli with subsequent platinum / palladium coating and SEM analysis. Sample was inserted into a filter disc (Pore size: 16 - 40 μm) and placed into the filter discs and porous pots holder. Cultivate fungi and bacteria on agar containing growth medium for 3 days.
    Read article
  • Clawed Frog Nuclear Envelope Protocol

    Application Note for Leica EM CPD300 - Critical point drying of nuclear pores from clawed frog oocytes with subsequent chromium coating and SEM analysis. Silicon chips containing the samples were placed into the filter discs and porous pots holder.
    Read article
  • Thin Metal Foils with Coatings - Sample Preparation for SEM

    Application Note for Leica EM RES102 - Thin foils are mostly unstable because of their thickness of a few microns. This makes it difficult to do slope cutting without any protection of the sample. A common realisation to protect the sample surface is by sticking a cover glass on top of the sample. Another issue is cutting the foils before ion milling. The sample edge should be flat and sharp without any broken areas. A razor blade is mostly the best solution. A protected sample can salso be sawed with a wire saw.
    Read article
  • Ion Beam Polishing of Sample Surfaces - Sample Preparation for SEM

    Application Note for Leica EM RES102 - Ion milling can be used to reduce the roughness of sample surfaces. Small angles less than 6° with respect to the sample surface are necessary. The high voltage depends on the material to be prepared. The reason for the levelling effect is the different milling angle of flat and rough surface areas. The milling rate is lower for small angles. The rough surface area will be faster milled. Ion polishing is often the final step of sample preparation. The prerequisite is a perfect mechanical prepreparation as samples with deep surface scratches cannot be ion polished. Soft materials usually have a smeared sample surface after mechanical polishing. It is necessary to remove this smeared material before ion polishing. Otherwise the above mentioned polishing effect does not work.
    Read article
  • Wrinkled Giant Hyssop Leaf Protocol

    Application Note for Leica EM CPD300 - Critical point drying of wrinkled giant hyssop leaf with subsequent gold coating and SEM analysis.
    Read article
  • Black Mould Protocol

    Application Note for Leica EM CPD300 - Critical point drying of Black mould (Aspergilus niger) with subsequent platinum / palladium coating and SEM analysis to detect conidiospores. Sample was inserted into a filter disc (Pore size: 16 - 40 μm) and placed into the filter discs and porous pots holder.
    Read article
  • Cross Sectioning of Oil Shale Rock

    Application Note for Leica TIC 3X - High quality sample preparation of large area to investigate the sample in the SEM. For the mechanical preparation step diamond lapping foils of 9μm subsequently 2μm and finally 0.5μm grain size were used. It took about 1.5 hours. The sample was removed from the stub with a razor blade after TXP processing and fixed onto the holder of the rotary stage of the Leica EM TIC 3X.
    Read article
  • Cryo-SEM Imaging of Latex Paint

    Application Note for Leica EM VCT100, Leica EM ACE600 - A thin layer of latex paint was spread on a clean, scored, silicon chip. The sample was immediately plunge frozen in liquid ethane and transferred under LN2 to the Leica EM VCT100 loading station where it was placed in the customized sample holder.
    Read article
  • Cross Sectioning of Rubber (Tire)

    Application Note for Leica EM TIC 3X - Ion beam slope cutting is a method that can achieve cross sections of soft materials or material combinations consisting of hard and soft components.
    Read article
  • Water Flea Protocol

    Application Note for Leica EM CPD300 - Critical point drying of water flea with subsequent gold coating and SEM-Analysis to detect finde surface structures.
    Read article
  • Human Blood Cells Protocol

    Application Note for Leica EM CPD300 - Life Science Research. Species: Human (Homo sapiens) Critical point drying of human blood with subsequent platinum / palladium coating and SEM analysis.
    Read article
  • Improvement of Metallic Thin Films for HR-SEM by Using DC Magnetron Sputter Coater

    Preparation techniques, like several kinds of coating methods play an important role for high resolution scanning electron microscopy (HR-SEM). Nonconductive sample like biological and synthetic samples have to be prepared with a thin conductive layer to prevent charging.
    Read article
  • Triple-beam Ar-Ion-Milling with a Rotary Stage to Decorate Grain Boundaries and Substructures in Rock Salt

    Decoration of grain boundaries in polycrystalline rocks has a long tradition in Structural Geology as in a monomineralic rock the recrystallized grain size is a good indicator for the paleostress conditions. Understanding the mechanical properties of rock salt and its deformation behavior is of major importance for the prediction of long-term stability of nuclear waste repositories, and our understanding of the dynamics of salt-related sedimentary basins which host the majority of oil and gas accumulations on Earth.
    Read article
  • High Quality Sample Preparation for EBSD Analysis by Broad Ion Beam Milling

    Electron Backscatter Diffraction technique (EBSD) is known as a "surface" technique because electron diffraction is generated within a few tens of nanometers of the sample surface. Therefore, the specimen surface should be exempt of any damages in order to produce EBSD patterns. Here, we present a successful and efficient EBSD sample polishing of two very challenging specimens prepared by broad ion beam milling.
    Read article
  • Customized Patterned Substrates for Highly Versatile Correlative Light-Scanning Electron Microscopy

    Correlative light electron microscopy (CLEM) combines the advantages of light and electron microscopy, thus making it possible to follow dynamic events in living cells at nanometre resolution. Various CLEM approaches and devices have been developed, each of which has its own advantages and technical challenges. We here describe our customized patterned glass substrates, which improve the feasibility of correlative fluorescence/confocal and scanning electron microscopy.
    Read article
  • 1
  • 2