Contact & Support

Widefield Microscopy

RSS feed
  • Introduction to Widefield Microscopy

    One of the most basic microscopy techniques is known as ‘Widefield Microscopy’. It is fundamentally any technique in which the entire specimen of interest is exposed to the light source with the resulting image being viewed either by the observer or a camera (which can also be attached to a computer monitor).
    Read article
  • Chronic Inflammation Under the Microscope

    In the course of chronic inflammation certain body areas are recurrently inflamed. This goes along with many human diseases. With the help of widefield light microscopy, the underlying processes can be examined from a cellular level to whole organisms. This article presents several widefield microscopy applications such as immunofluorescence, live-cell imaging, histology, and ratiometric analysis to get insight into the development of chronic inflammation, the related diseases, and their treatment.
    Read article
  • Webinar: Introduction to Fluorescence Microscopy

    In this seminar we will provide an overview about the latest advances in fluorescence microscopy. You will learn how you can use widefield and confocal microscopes to help you understand life’s questions down to tiny details, at high speed and state-of-the-art image quality both in living and fixed samples.
    Read article
  • Three-Dimensional Super-Resolution GSDIM Microscopy

    With the new 3D GSDIM technique structures like the Golgi and the microtubular network are resolved not only laterally, but also in a third dimension. The principle is based on the use of optical astigmatism to determine the accurate lateral and axial position of individual fluorochromes.
    Read article
  • 3D Localization Microscopy With Ground State Depletion (GSD)

    With the latest development of a GSD 3D super-resolution platform, it is now possible to achieve a lateral resolution of down to 20 nm and an axial resolution of 70 nm. The technology is based on an astigmatism approach using a manipulated PSF to localize the molecule in z. This following tutorial describes the basic principles of the 3D GSD technology.
    Read article
  • Widefield Calcium Imaging with Calcium Indicator Fura2

    In eukaryotic cells Ca2+ is one of the most widespread second messengers used in signal transduction pathways. Intracellular levels of Ca2+ are usually kept low, as Ca2+ often forms insoluble complexes with phosphorylated and carboxylated compounds. Typically cytosolic Ca2+ concentrations are in the range of 100 nM. In response to stimuli Ca2+ may either be released from external medium or internal stores to raise the Ca2+ concentration.
    Read article
  • Widefield Super-Resolution with GSDIM

    Great advancements in biology have been possible by using fluorescence microscopy. So far, the resolution of the images was limited due to physical constraints. In the past couple of years, new methods evolved circumventing these limitations and bringing fluorescence microscopy to a new level of resolution, boosting the possibilities in science with fluorescence microscopes.
    Read article
  • Deconvolution

    Fluorescence microscopy is a modern and steadily evolving tool to bring light to current cell biological questions. With the help of fluorescent proteins or dyes it is possible to make discrete cellular components visible in a highly specific manner. A prerequisite for these kinds of investigations is a powerful fluorescence microscope. One special aim is the three-dimensional illustration of a structure to get an impression of full plasticity. This poses a certain problem for the experimenter using a classical light microscope.
    Read article
  • How Widefield Super-Resolution GSDIM Images are Created

    The localization microscopy technique GSDIM is a proven technology to achieve super-resolution images with a resolution of up to 20 nm. In the following tutorial we will describe the basic principles and features of GSDIM.
    Read article
  • Step by Step Guide to the Molecular Basics of GSDIM Microscopy

    Ground state depletion microscopy followed by individual molecule return (GSDIM) is a super-resolution technique based on single molecule localization (Localization Microscopy). To localize single molecules and create a high resolution image the ensemble of overlapping fluorophores (in a diffraction-limited setup) has to be broken up. Individual fluorophores must be temporally "separated" to allow high precision detection of single molecules. This tutorial will explain the molecular basics of GSDIM.
    Read article
  • Super-Resolution GSDIM Microscopy

    The nanoscopic technique GSDIM (ground state depletion microscopy followed by individual molecule return) provides a detailed image of the spatial arrangement of proteins and other biomolecules within the cell. There is now a first commercial system (the Leica SR GSD) on the market that is helping to make the GSDIM technique available to a wider group of users in research labs and imaging centers.
    Read article
  • Mapping Billions of Synapses with Microscopy and Mathematics

    A combination of widefield imaging techniques and image segmentation analysis enable researchers to map learning-induced functional changes in individual synapses throughout the hippocampus.
    Read article