Contact & Support

Zebrafish

RSS feed
  • DLS Sample Preparation: Using U-Shaped Glass Capillaries for Sample Mounting

    The TCS SP8 DLS microscope system from Leica Microsystems is an innovative concept which integrates the Light Sheet Microscopy technology into the SP8 confocal platform. Due to its unique optical architecture, samples can be mounted on standard glass bottom petri dishes and require little or no adaptation when compared to conventional mounting procedures. Here, we present a convenient way to prepare specimens quickly for light sheet imaging with the TCS SP8 DLS system.
    Read article
  • Real Time Observation of Neutrophil White Blood Cell Recruitment to Bacterial Infection In Vivo

    The zebrafish (Danio rerio) is an emerging vertebrate model organism to study infection. The transparent larva comprises a fully functional innate immune system and enables live imaging of fluorescent immune cells in transgenic animals. Zebrafish infection models have been developed for both the human bacterial pathogen Shigella flexneri and the natural fish bacterial pathogen Mycobacterium marinum. Importantly, whilst S. flexneri causes acute infection and is typically used as an inflammatory paradigm, M. marinum causes a chronic disease similar to tuberculosis in humans. Here, we use real time fluorescence microscopy to image transgenic zebrafish larvae with neutrophils (granulocyte white blood cells) expressing the green fluorescent protein eGFP.
    Read article
  • Evaluation of Zebrafish as a Model to Study the Pathogenesis of the Opportunistic Pathogen Cronobacter Turicensis

    Application example of HyVolution Super-Resolution - Bacteria belonging to the genus Cronobacter spp. have been recognized as causative agents of life-threatening systemic infections, primarily in premature, low-birth weight and/or immune-compromised neonates. Knowledge remains scarce regarding the underlying molecular mechanisms of disease development. In this study, we evaluated the use of a zebrafish model to study the pathogenesis of Cronobacter turicensis LMG 23827T, a clinical isolate responsible for two fatal sepsis cases in neonates.
    Read article
  • Work More Efficiently in Developmental Biology With Stereo Microscopy: Zebrafish, Medaka, and Xenopus

    Among the aquatic model organisms used in molecular and developmental biology the most prominent are the zebrafish (genus species: Danio rerio), medaka or japanese rice fish (genus species: Oryzias latipes), and african clawed frog (genus species: Xenopus laevis). This report gives useful information to scientists and technicians which can help improve their daily laboratory work by making the steps of transgenesis, fluorescent screening, and functional imaging more efficient.
    Read article
  • Infection of Zebrafish Embryos with Intracellular Bacterial Pathogens

    Transparent zebrafish embryos have proved useful model hosts to visualize and functionally study interactions between innate immune cells and intracellular bacterial pathogens, such as Salmonella typhimurium and Mycobacterium marinum. Micro-injection of bacteria and multi-color fluorescence imaging are essential techniques involved in the application of zebrafish embryo infection models.
    Read article
  • Intravenous Microinjections of Zebrafish Larvae to Study Acute Kidney Injury

    We describe a technique of microinjecting the aminoglycoside, gentamicin, into 2 days post-fetilization (dpf) zebrafish larvae to induce acute kidney injury (AKI). We also describe a method for whole mount immunohistochemistry, plastic embedding and sectioning of zebrafish larvae to visualize the AKI mediated damage.
    Read article
  • Webinar: Light Sheet Imaging – New Solutions and Their Applications in Zebrafish Embryogenesis

    Living cells and organisms often suffer from high light intensities that are used in conventional imaging. Light sheet microscopy reduces phototoxic effects and bleaching, by only illuminating a specimen in a single plane at a time whilst the signal is detected in a perpendicular direction. In combination with high-speed cameras for image acquisition, light sheet microscopy is a very gentle method to observe fast biological processes in sensitive organisms over an extended time period.
    Read article
  • Patch Clamp Recordings from Embryonic Zebrafish Mauthner Cells

    Mauthner cells (M-cells) are large reticulospinal neurons located in the hindbrain of teleost fish. They are key neurons involved in a characteristic behavior known as the C-start or escape response that occurs when the organism perceives a threat. The M-cell has been extensively studied in adult goldfish where it has been shown to receive a wide range of excitatory, inhibitory and neuromodulatory signals. We have been examining M-cell activity in embryonic zebrafish in order to study aspects of synaptic development in a vertebrate preparation. In the late 1990s Ali and colleagues developed a preparation for patch clamp recording from M-cells in zebrafish embryos, in which the CNS was largely intact.
    Read article
  • Organ Regeneration: An Unlikely Fish Tale

    Spectacular discoveries in cardiac tissue regeneration are rapidly moving researchers closer to the goal of harnessing regenerative techniques to repair the human heart. Only eleven years ago, Dr. Kenneth Poss, Professor of Cell Biology at Duke University and an Early Career Scientist of the Howard Hughes Medical Institute, published the first research to clearly visualize an example of cardiac tissue regeneration using fluorescence microscopy.
    Read article
  • Find the Needle in the Haystack

    The obvious has been explored. These days, biologists strive to identify and analyze hidden and rare events. The task is tackled by automatically screening large numbers of objects – typically growing in multi-well plates – over a long period of time. When an interesting feature is identified (manually or by means of computed recognition), modern systems can automatically monitor and record these events at high resolution.
    Read article
  • Deep Tissue Imaging

    Developmental biology using Multiphoton microscopy with OPO. To gain new insight into the fundamental control of cell response to physical changes and to study the dynamics and roles of biological flow during the development of the zebrafish, Dr. Julien Vermot established his lab last year at the Institute of Genetics and Molecular and Cellular Biology (IGBMC) in Strasbourg, France.
    Read article