Leica Science Lab - Tag : Coating https://www.leica-microsystems.com//science-lab/tag/tags/coating/show/Tag/ Article tagged with Coating en-US https://www.leica-microsystems.com/25036 EM Sample Preparation Expert Knowledge on High Pressure Freezing and Freeze Fracturing in the Cryo SEM Workflow Get an insight in the working methods of the laboratory and learn about the advantages of Cryo SEM investigation in EM Sample Preparation. Find out how high pressure freezing, freeze fracturing and cryo transfer add to the Cryo SEM workflow and how the Leica portfolio ensures the compatibility between these different steps. https://www.leica-microsystems.com//science-lab/expert-knowledge-on-high-pressure-freezing-and-freeze-fracturing-in-the-cryo-sem-workflow/ Thu, 23 May 2019 22:00:00 +0000 Gisela Höflinger https://www.leica-microsystems.com/19176 EM Sample Preparation Drosophila larvae - Sample Preparation for Cryo-SEM Application Note for Leica EM ACE900 - Drosophila larvae were sandwiched between two 3 mm aluminum slit carriers with the 100 μm cavities facing each other and high-pressure frozen with a Leica EM HPM100. No ethanol as synchronization media was used, 1-hexadecene was used as filler. The wholes of the slit carriers were filled with filter tips dipped in 1-hexadecene to keep the carrier sandwich complete after freezing. https://www.leica-microsystems.com//science-lab/drosophila-larvae-sample-preparation-for-cryo-sem/ Mon, 30 Jan 2017 09:50:00 +0000 Dr. Andres Kaech, Prof. Damian Brunner https://www.leica-microsystems.com/19179 EM Sample Preparation Giardia lamblia - Sample Preparation for Cryo-SEM Application Note for Leica EM ACE900 - A 100 mesh copper grid (12 um thickness) was dipped into a concentrated Giardia suspension and sandwiched between two flat 3 mm aluminum specimen carriers with scratched surfaces. Subsequently, the sandwich was transferred to the widened hole of a middle plate (3.1 mm diameter). A 50 um spacer ring was added on top and the specimen immediately frozen with an HPM100 high-pressure freezing machine without using alcohol as synchronization fluid. https://www.leica-microsystems.com//science-lab/giardia-lamblia-sample-preparation-for-cryo-sem/ Mon, 30 Jan 2017 09:35:00 +0000 Dr. Andres Kaech, Joe Paulin Zumthor https://www.leica-microsystems.com/19003 EM Sample Preparation Carbon Coating for Polymeric Materials Application Note fo Leica EM ACE600 - A solid understanding of polymer property-structure relationships is critical to improve and shorten development routes to new products. A direct way to determine correlations between structure and mechanical properties is provided by electron microscopy. Electron microscopy techniques have an important advantage over other methods, as they can provide local information at high spatial resolution. However, a major problem with polymers is their inherent lack of contrast. https://www.leica-microsystems.com//science-lab/carbon-coating-for-polymeric-materials/ Mon, 05 Dec 2016 09:22:00 +0000 PhD Frédéric Leroux https://www.leica-microsystems.com/18983 EM Sample Preparation High-Resolution Carbon Coating: How much Carbon is too much? Application Note for Leica EM ACE600 - Carbon support films are routinely used for high resolution TEM. Thickness is one of the main criteria to assess its usefulness for a particular experiment. Within that respect graphene (oxide) layers are frequently used. However, charge dissipation and mechanical stability towards high probe currents and high voltages, including long term acquisition protocols are equally important. https://www.leica-microsystems.com//science-lab/high-resolution-carbon-coating-how-much-carbon-is-too-much/ Wed, 23 Nov 2016 11:56:00 +0000 PhD Frédéric Leroux https://www.leica-microsystems.com/18976 EM Sample Preparation Each Atom Counts: Protect Your Samples Prior to FIB Processing Application Note for Leica EM ACE600 - Focused ion beam (FIB) technology has become an indispensable tool for site-specific TEM sample preparation. It allows to extract electron transparent specimens with nanometer precision using a focused Ga+ ion beam. https://www.leica-microsystems.com//science-lab/each-atom-counts-protect-your-samples-prior-to-fib-processing/ Wed, 23 Nov 2016 11:43:00 +0000 PhD Frédéric Leroux https://www.leica-microsystems.com/18110 EM Sample Preparation Tobacco Leaf - Critical Point Drying Protocol for SEM Application Note for Leica EM CPD300 - Critical point drying of tobacco leafs with subsequent platinum coating and SEM analysis. https://www.leica-microsystems.com//science-lab/tobacco-leaf-critical-point-drying-protocol-for-sem/ Fri, 18 Nov 2016 16:21:00 +0000 Dr. Martin W. Goldberg, M.Sc. Christine Richardson https://www.leica-microsystems.com/18106 EM Sample Preparation Nematode E. dianae - Critical Point Drying Protocol for SEM Application Note for Leica EM CPD300 - Critical point drying of nematode Eubostrichus dianae to detect the ectosymbiotic bacteria layer with subsequent gold coating ans SEM analysis. https://www.leica-microsystems.com//science-lab/nematode-e-dianae-critical-point-drying-protocol-for-sem/ Wed, 16 Nov 2016 11:05:00 +0000 Mag. Nikolaus Leisch https://www.leica-microsystems.com/18142 EM Sample Preparation Wall Cress Pod Protocol - Critical Point Drying of Arabidopsis thaliana for SEM Application Note for Leica EM CPD300 - Critical point drying of wall cress (Arabidopsis thaliana) pod with subsequent gold coating and SEM analysis. https://www.leica-microsystems.com//science-lab/wall-cress-pod-protocol-critical-point-drying-of-arabidopsis-thaliana-for-sem/ Tue, 25 Oct 2016 08:00:00 +0000 Dr. Chen LiYu https://www.leica-microsystems.com/18096 EM Sample Preparation Bacteria Protocol - Critical Point Drying of E. coli for SEM Application Note for Leica EM CPD300 - Critical point drying of E. coli with subsequent platinum / palladium coating and SEM analysis. Sample was inserted into a filter disc (Pore size: 16 - 40 μm) and placed into the filter discs and porous pots holder. Cultivate fungi and bacteria on agar containing growth medium for 3 days. https://www.leica-microsystems.com//science-lab/bacteria-protocol-critical-point-drying-of-e-coli-for-sem/ Thu, 13 Oct 2016 10:04:00 +0000 Dr. W. H. Mueller https://www.leica-microsystems.com/18259 EM Sample Preparation Thin Metal Foils with Coatings - Sample Preparation for SEM Application Note for Leica EM RES102 - Thin foils are mostly unstable because of their thickness of a few microns. This makes it difficult to do slope cutting without any protection of the sample. A common realisation to protect the sample surface is by sticking a cover glass on top of the sample. Another issue is cutting the foils before ion milling. The sample edge should be flat and sharp without any broken areas. A razor blade is mostly the best solution. A protected sample can salso be sawed with a wire saw. https://www.leica-microsystems.com//science-lab/thin-metal-foils-with-coatings-sample-preparation-for-sem/ Wed, 05 Oct 2016 07:16:00 +0000 PhD Wolfgang Grünewald https://www.leica-microsystems.com/18818 EM Sample Preparation Ultra-thin Carbon Support Films for Improved STEM-EELS Analysis of Nanoparticles Application Note for Leica EM ACE600 - Recent developments in aberration corrected transmission electron microscopes as well as further improvements in monochromaters and spectrometers have pushed the attainable energy resolution for Electron energy loss spectroscopy (EELS) to 100 meV and beyond. STEM-EELS of individual nanomaterials can be challenging due the necessity of a support film. https://www.leica-microsystems.com//science-lab/ultra-thin-carbon-support-films-for-improved-stem-eels-analysis-of-nanoparticles/ Wed, 21 Sep 2016 11:27:00 +0000 PhD Frédéric Leroux https://www.leica-microsystems.com/18820 EM Sample Preparation Ways to Reveal More from your Samples: Ultra-Thin Carbon Films Application Note for Leica EM ACE600 - Much of the battle involved in obtaining good transmission electron microscopy data is in the specimen preparation itself. Even though some nanomaterials are already electron transparent (e.g. nanoparticles and proteins) and often do not require further thinning procedures, they need to be dispersed onto thin support films. https://www.leica-microsystems.com//science-lab/ways-to-reveal-more-from-your-samples-ultra-thin-carbon-films/ Wed, 21 Sep 2016 11:23:00 +0000 PhD Frédéric Leroux, Jan de Weert https://www.leica-microsystems.com/18144 EM Sample Preparation Wrinkled Giant Hyssop Leaf Protocol Application Note for Leica EM CPD300 - Critical point drying of wrinkled giant hyssop leaf with subsequent gold coating and SEM analysis. https://www.leica-microsystems.com//science-lab/wrinkled-giant-hyssop-leaf-protocol/ Thu, 11 Aug 2016 17:04:00 +0000 Dr. Guo JianSheng https://www.leica-microsystems.com/18100 EM Sample Preparation Black Mould Protocol Application Note for Leica EM CPD300 - Critical point drying of Black mould (Aspergilus niger) with subsequent platinum / palladium coating and SEM analysis to detect conidiospores. Sample was inserted into a filter disc (Pore size: 16 - 40 μm) and placed into the filter discs and porous pots holder. https://www.leica-microsystems.com//science-lab/black-mould-protocol/ Tue, 09 Aug 2016 12:01:00 +0000 Dr. W. H. Mueller https://www.leica-microsystems.com/18284 EM Sample Preparation Cryo-SEM Imaging of Latex Paint Application Note for Leica EM VCT100, Leica EM ACE600 - A thin layer of latex paint was spread on a clean, scored, silicon chip. The sample was immediately plunge frozen in liquid ethane and transferred under LN2 to the Leica EM VCT100 loading station where it was placed in the customized sample holder. https://www.leica-microsystems.com//science-lab/cryo-sem-imaging-of-latex-paint/ Thu, 16 Jun 2016 16:50:00 +0000 Dr. Levi Felts, Dr. Kim Rensing, Chris Frethem https://www.leica-microsystems.com/18124 Quality Assurance EM Sample Preparation Inspection of Multilayer Coating in the Automotive Industry Today’s automotive industry use a variety of decorative and functional treatment to improve the vehicles surfaces. Traditional quality control methods to inspect these multilayer samples have proven to be extremely time-consuming and bear the risk of missing defects. A new approach combining a target surface system and a light microscope offers new possibilities of speed and reliability. F. Javier Ruiz Balbas, Laboratory Manager at Atotech Spain, explains his experiences with the system. https://www.leica-microsystems.com//science-lab/fjavier-ruiz-balbas-atotec-the-leica-system-offers-flexibility-and-permissively-to-achieve-high-quality-results-in-short-time/ Mon, 30 May 2016 13:00:00 +0000 F.Javier Ruiz Balbas, Kerstin Pingel https://www.leica-microsystems.com/18079 EM Sample Preparation Human Blood Cells Protocol Application Note for Leica EM CPD300 - Life Science Research. Species: Human (Homo sapiens) Critical point drying of human blood with subsequent platinum / palladium coating and SEM analysis. https://www.leica-microsystems.com//science-lab/human-blood-cells-protocol/ Tue, 24 May 2016 08:03:00 +0000 Dr. W. H. Mueller https://www.leica-microsystems.com/17379 EM Sample Preparation High Pressure Freezing with Light Stimulation Sun screen lotion was carefully filled in the 100 μm incision of a 3 mm copper/gold plated flat carrier and covered with 3 mm sapphire disk. The sun screen lotion sample was then high pressure frozen with a Leica EM ICE with and subsequently without light stimulation. The light stimulated samples were exposed to a UV light for 500 milliseconds. https://www.leica-microsystems.com//science-lab/high-pressure-freezing-with-light-stimulation/ Fri, 18 Dec 2015 12:01:00 +0000 PhD Dietmar Pum, Dr. Cveta Tomova, PhD Saskia Mimietz-Oeckler https://www.leica-microsystems.com/16804 EM Sample Preparation Electron Microscopy Sample Preparation: “The Future is Cold, Dynamic and Hybrid” In 2014, the renowned Electron Microscopy for Materials Science (EMAT) research lab at the University Antwerp, Belgium, and Leica Microsystems started a fruitful collaboration to establish a Leica Reference Site in Antwerp. This site, officially opened in July 2014, is dedicated to specimen preparation for electron microscopy in materials science with a special focus on ion beam milling and recently also on carbon coating. In this interview Prof Gustaf van Tendeloo, Director of EMAT, and Frédéric Leroux, TEM specimen preparation specialist, talk about research topics at EMAT, how the Leica reference site has evolved, and future trends for EM sample preparation. https://www.leica-microsystems.com//science-lab/electron-microscopy-sample-preparation-the-future-is-cold-dynamic-and-hybrid/ Thu, 22 Oct 2015 19:22:00 +0000 Prof. Gustaaf (Staf) Van Tendeloo, PhD Frédéric Leroux, Florence Hauger https://www.leica-microsystems.com/14386 EM Sample Preparation How to Clean a Coater Coating of samples is required in the field of electron microscopy to enable or improve the imaging of samples. Compared to the traditional coater design, all parts of a Leica EM ACE Coater can be individually removed and cleaned or, if special cleanliness is needed, even exchanged for spare parts. https://www.leica-microsystems.com//science-lab/how-to-clean-a-coater/ Thu, 16 Oct 2014 16:24:00 +0000 Gisela Höflinger https://www.leica-microsystems.com/14406 EM Sample Preparation Brief Introduction to Freeze Fracture and Etching Freeze fracture describes the technique of breaking a frozen specimen to reveal internal structures. Freeze etching is the sublimation of surface ice under vacuum to reveal details of the fractured face that were originally hidden. A metal/carbon mix enables the sample to be imaged in a SEM (block-face) or TEM (replica). It is used to investigate for instance cell organelles, membranes, layers and emulsions. https://www.leica-microsystems.com//science-lab/brief-introduction-to-freeze-fracture-and-etching/ Wed, 01 Oct 2014 09:27:00 +0000 Gisela Höflinger https://www.leica-microsystems.com/13490 Surface Metrology Characterization of Thin Films Using High Definition Confocal Microscopy Thin film characterization technologies are in high demand, given the wide-spread use of coatings in all engineering and science fields. The properties of thin films can vary dramatically, i.e. thickness, optical and electrical properties, hardness, etc., that is difficult to find a general purpose characterization technique. https://www.leica-microsystems.com//science-lab/characterization-of-thin-films-using-high-definition-confocal-microscopy/ Thu, 05 Jun 2014 10:52:00 +0000 MSc Marco Renzelli, PhD Edoardo Bemporad https://www.leica-microsystems.com/10222 EM Sample Preparation Brief Introduction to Coating Technology for Electron Microscopy Coating of samples is required in the field of electron microscopy to enable or improve the imaging of samples. Creating a conductive layer of metal on the sample inhibits charging, reduces thermal damage and improves the secondary electron signal required for topographic examination in the SEM. https://www.leica-microsystems.com//science-lab/brief-introduction-to-coating-technology-for-electron-microscopy/ Wed, 28 Aug 2013 12:10:00 +0000 Gisela Höflinger