Immersion Objectives: Using Oil, Glycerol, or Water to Overcome some of the Limits of Resolution

August 09, 2017

To examine specimens at high magnifications using the microscope, there are a number of factors which need to be taken into consideration. These include resolution, numerical aperture (NA), the working distance of objectives and the refractive index of the medium through which the image is collected by the front lens of an objective. In this article, we will briefly look at how using an immersion medium between the coverslip and the objective front lens helps to increase the NA and resolution. In addition, we will consider the refractive index of air and the glass with which slides and coverslips are composed and how an immersion medium is used to partially reduce the mismatch when light travels from one medium to another. There are also practical tips for using oil immersion systems as well as the benefits of using water immersion objectives, especially when imaging live cells

Immersion Liquids

One of the main problems in light microscopy is to overcome some of the limits of optical resolution and to increase the NA of the system. In brief, the NA of an objective is the ability to gather light from a specimen whereas resolution is the ability of an objective to distinguish details in the specimen.

Resolution and NA will be covered in other articles, but we will now examine immersion techniques available to microscopists which allow the imaging of specimens at high magnification whilst overcoming some of the limits of resolution.

Having an immersion liquid in place of the air gap between the front lens of an objective and the cover glass of a specimen increases the resolution of an objective. When light passes from one medium to another (for example, through glass to air) it refracts - in other words, it bends and scatters. Any light rays which are refracted into the air, reflected by the cover glass or actually blocked by the metal housing of the objective front lens do not contribute to the image formation. The purpose of the immersion liquid is to decrease the amount of refraction and reflection of light from the specimen and increase the ability of the objective to capture this otherwise deviated light (s.Figure 1). 

Figure 1: Left: When light passes two media with different refractive indexes (RI) (for example, through glass to air) it refracts. Any light rays which are refracted into the air, reflected by the cover glass or actually blocked by the metal housing of the objective front lens do not contribute to the image formation. Right: An immersion liquid with a refractive index matched to the refractive index of the cover glass and the medium the specimen is mounted, decreases the amount of refraction and reflection of light from the specimen

Refractive Index

The physical properties of the medium through which light rays travel determines the degree to which the light will be refracted. The ‘refractive index’ is a numerical value (without units) which is a determinant of the extent to which light will refract when passing through a material. Air has a refractive index of 1.0 whereas microscope slides and cover glasses typically have refractive indexes of 1.5. Taking this difference into account, the purpose of the immersion liquid is to match (as closely as possible) the refractive index of the glass in which the specimen is mounted, therefore increasing the amount of light rays which will form the final image. Subsequently, most immersion oils have a refractive index of 1.51. For common refractive indices, see Table 1.

Immersion Medium






Glycerol (100%)


Cedar Oil


Leica Immersion Oil (standard and type “F”)






Glass (borosilicate or “Parex”)


Glass (crown or soda-lime)




Mounting Medium


Cell Culture Medium

1.31 to 1.33



ProLong®/ProLong® Gold







1.41 – 1.49

A Homogenous Immersion System

The ideal scenario is to create what is known as a ‘Homogenous Immersion System’. Using this system, it is possible to achieve the maximum resolution and NA. The purpose of the homogenous immersion system is to match (as closely as possible) the refractive index and NA of the front lens of the objective, the immersion medium, cover glass/slide, the mounting medium, and (in principle) the lens of the condenser (s. Figure 2 and Table 1).

Placing immersion liquid on the lens of the condenser is usually not necessary. If the microscope is correctly set up and aligned to achieve optimal contrast and illumination across the specimen (see the article on Koehler Illumination), then the position and settings of the condenser will be optimised so as to contribute to the overall NA of the microscope system.

Figure 2: The refractive indexes of all optical elements between the specimen and the front lens of the objective have a major influence on the image quality. Ideally, they should match to each other as closely as possible like in this example of a specimen mounted in a glycerol based mounting medium.

Working Distance

One other factor which needs to be considered with microscope objectives is the ‘Working Distance’. This is simply the actual distance between the objective front lens and the surface of the cover glass when the specimen is in sharp focus (s. Figure 3). When the objective is moved to be closer to the slide, the focal plane moves further into the specimen. However, this is physically limited by the fact that the objective can only be moved until it is in contact with the cover glass. There is an inverse relationship between working distances and the magnification of each objective. For example, a 10x objective may have a working distance of 4 mm, whereas the working distance of a 100x oil objective will typically be in the region of 130 mm. In comparison, some water immersion/water dipping objectives offer working distances of around 3 mm. The working distance is another piece of information which is usually engraved on the barrel of the objective and abbreviated as ‘WD’ (not to be confused with Water Dipping objectives - see below).

Figure 3: The working distance is the distance between the objective front lens and the surface of the cover glass.

Immersion Oil and Objectives

Figure 4: Oil immersion objectives are ideally suited for samples that are mounted in a medium that matches the refractive index of glass.

A crucial factor to remember when using oil objectives is to use the correctly matched immersion oil. Only use oil which is recommended by the objective manufacturer. For many years, cedar wood oil was routinely used for immersion (and is still commercially available). Although this oil has a refractive index of 1.516, it has a tendency to harden and can cause lens damage if not removed after use. In addition, this oil will absorb blue wavelength and ultraviolet light and can also yellow with age.

Most modern oils are synthetically manufactured and standardised to ensure that they do not damage lenses or do not change colour with age. One point to bear in mind is that immersion oil has an optimal working temperature. Most commercial synthetic oils are designed to work at 23° C and a change of only 1° C will result in a change in the refractive index of 0.0004. Other oils are available to optimally work at different temperatures, but for most purposes, a microscope facility should be kept stable at 23° C (this is also important for housing instruments such as confocal microscopes).

When using oil immersion objectives (s. Figure 4) for fluorescence microscopy, it is recommended to use special low auto-fluorescence oil. Many general oils will fluoresce under certain conditions. Most of the oils for fluorescence microscopy are identified by having the letter ‘F’ before or after the oil name/code.

Using an Oil Immersion Objective

  • Start by viewing your sample with a low magnification objective to find the area of interest on your slide.
  • Work up to the 40x objective and set up the microscope for Koehler Illumination.
  • Swing the nosepiece (the turret which houses the objectives) around between the 40x and the 100x objective, but do not fully engage the high power objective.
  • Whilst looking from the side of the microscope, carefully place one drop of immersion oil directly onto the cover glass. Swing the high power objective into place and (continuing to look at the stage from the side), use the coarse, then the fine focus to bring the objective front lens into contact with the oil. Some oil objectives have a concave front lens which means you should also add a drop of oil to the objective to prevent air bubbles becoming trapped in the concave lens.
  • You can then look down the eyepieces again. Use only the fine focus to adjust the field of view. Although high power objectives have a spring-loaded nose, coarse focussing at this stage can easily result in cracking the cover glass or slide and can also damage the objective front lens.
  • Even if you plan to examine other slides, you should remove the oil from the objective at this stage to prevent possible contamination of other parts of the microscope. Immersion oil can (and will) penetrate and damage microscope components and objectives not suited for immersion. Remove excess oil using a lens cleaning tissue with a single sweep across the lens. Keep wiping the objective front lens with a clean piece of tissue for each wipe until no trace of oil remains. Commercial oil removal solutions are available or a small amount of xylene can be used to finally clean the lens. Again, it is important to check the recommendations from the objective manufacturer before applying any solutions to the lens. 

Water Immersion Objectives

Figure 5: A water dipping objective is a special kind of water immersion objective with an inert tip and a long working distance.

A less common immersion objective found on research-grade microscopes (and usually confocal microscopes) is the ‘water-immersion’ objective, usually abbreviated as ‘WI’ or ‘W’ on the barrel of the objective. The water immersion objective is highly recommended when imaging live cells which are in cell medium. There are two types of water immersions objectives (s. Figure 5) - ‘water immersion’ and ‘water dipping’ (usually abbreviated as ‘WD’ on the barrel of the objective and not to be confused with ‘Working Distance’).

The water dipping objectives are commonly used with an upright microscope configuration and are used to dip directly into water or water-based medium/buffer. The dipping objectives are manufactured to provide a very long working distance. They are also manufactured with steeply angled nose-pieces which are constructed from inert material such as ceramic. Water immersion objectives are used in a manner similar to oil immersion objectives, but with water in place of the drop of oil.

One of the advantages of using a water immersion objective is simply that water is used as the immersion medium. This is obviously easy to apply and clean off. Additionally, you do not need to use specific immersion oil depending on the imaging you are carrying out, nor do you need to use an immersion medium as specified by the manufacturer of the microscope and objective. There are, however, some disadvantages when using a water immersion objective. A higher resolution is achievable with oil immersion objectives compared to the aqueous objectives. In addition, due to the viscosity of water (compared to oil), the use of water immersion objectives can be susceptible to vibrations and small air movements. Such artefacts can be overcome by ensuring the microscope is placed on an anti-vibration table. Alternatively, a more simple solution is to place a special ring which sits over the slide to create a small pool of water. The final disadvantage of water immersion objectives is their cost. Some water immersion objectives can cost as much as a complete research grade microscope.

Leica offers a Water Immersion Micro Dispenser which overcomes the potential problem of water evaporation during long-term live-cell imaging or screening experiments (s. Figure 6). 

Figure 6: A water immersion micro dispenser adds immersion automatically during a running experiment.

Overall, the main advantage of water immersion objectives comes when imaging live cells and tissue. This is mainly due to the fact that oil immersion objectives are not suited for imaging through the cell or tissue chambers used for live cell microscopy. 

Live Cell Imaging

Living cells are usually contained within a chamber as well as being covered with cell medium (or buffer). The chamber (and the medium) help to ensure that the cells or tissue are maintained within a stable environment whilst imaging. As a consequence, the optimum focal distance will be at a relatively large distance from the cover of the chamber. This makes the short working distance of oil immersion objectives unsuitable for imaging through the cover glass/chamber, the medium/buffer and to the actual cells/tissue.

Furthermore, using an oil immersion objective to view cells within an aqueous medium would add additional refraction problems as oil and water have different refractive indices.

When viewing living cells within a chamber, the light path will encounter different refractive indices. The material of the chamber/coverslip and the aqueous medium covering the cells or tissue will each have a different refractive index. The light which forms the specimen image will be refracted at each stage which can lead to spherical aberrations. 

Correction Collars

Despite the refraction which can occur at the water, glass or plastic interfaces, water immersion objectives are usually corrected for this. In addition, some water immersion objectives have correction collars. These rings around the objective barrel can be adjusted to suit the different thickness of cover glasses.

Leica also offers motorized correction collar objectives which allow for precise and remote adjustment of objectives which ensure that the optimal resolution is restored with the minimum of disruption to the samples and imaging set up (s. Figure 7).

Figure 7: A correction collar enables the objective to be adjusted to different thicknesses of cover glasses. A motorized correction collar can restore optimal settings with a minimum of disruption.

Water Immersion and Confocal

Finally, one of the most suitable applications of water immersion objectives is the confocal imaging of live cells, and as such, they are usually one of the standard features of many confocal systems. Due to the low viscosity of water versus oil, the use of these objectives results in less surface tension across the cover slip which means there is less chance of displacement of the specimen especially during the acquisition of Z-stacks.

Glycerol Immersion Objectives

Figure 8: Glycerol objectives are a good choice for samples mounted in media with a refractive index close to that of a glycerol/water mixture (e.g. VECTASHIELD® Hard+SetTM).

Glycerol is an additional immersion medium. A lot of fixed samples are mounted in Mowiol, Vectashield or similar mixtures based on glycerol (s. Table 1). These media have refractive indexes close to that of a 80/20 glycerol/water mixture (RI=1.45). Glycerol objectives (s. Figure 8) are the best choice for samples mounted in such media.