Pesquisa de câncer

A pesquisa de terapias para o câncer requer, frequentemente, a combinação da microscopia de fluorescência e ensaios funcionais inovadores

 Cancer-Research-Header.jpg

O câncer é uma doença complexa e heterogênea causada por células com deficiência na regulação do crescimento. Mudanças genéticas e epigenéticas em uma ou em um grupo de células prejudicam o funcionamento normal e resultam em um crescimento celular descontrolado e na proliferação.

A aquisição de imagens tornou-se uma ferramenta essencial no estudo da biologia do câncer. A aquisição de imagens de alta resolução é indispensável para o estudo de mudanças na sinalização genética e celular subjacentes ao câncer, enquanto que a aquisição de imagens de células vivas é crucial para uma compreensão mais profunda da função e mecanismos da doença. As técnicas de microscopia também são essenciais para o estudo de relações espaciais entre os diferentes tipos de células tumorais. Elas também são importantes para compreender a função do sistema imunológico em combater células cancerígenas. Para isso, os pesquisadores confiam na aquisição de imagens multicoloridas para uma taxa mais acelerada de descobertas.

Desafios ao usar a aquisição de imagens para estudar o câncer

Óptima resolução temporal e espacial

A pesquisa de terapias para o câncer requer, frequentemente, a combinação da microscopia de fluorescência e ensaios funcionais inovadores. Com uma resolução temporal e espacial otimizada, os pesquisadores podem monitorar eventos dinâmicos em células vivas, como a migração de células e metástases. Esses processos dinâmicos estão no centro do desenvolvimento do câncer.

Visualização em tempo real

Compreender esses processos tem sido desafiador devido à dificuldade de visualização do comportamento da célula tumoral em tempo real. A aquisição rápida de imagens por períodos prolongados tende a vir com um sacrifício: resolução mais baixa ou, mais frequentemente, danos aos seus preciosos espécimes. O desafio é encontrar a técnica e o sistema de aquisição de imagens que ofereçam a você os melhores dados com a mais alta resolução, enquanto mantêm as células vivas, para que você possa acompanhar os processos de interesse.

Multiplexação para compreender os mecanismos da doença

A microscopia de fluorescência multicolorida, com base em confocalidade ou campo amplo, é uma ferramenta fundamental para compreender o contexto espacial, a colocalização e a proximidade de diversos biomarcadores ao se estudar eventos complexos, como a imunossupressão ou a angiogênese. Esse objetivo pode frequentemente ser desafiador, pois há limitações relacionadas ao número de fluoróforos que se pode distinguir com sucesso usando essa abordagem de "multiplexação". Felizmente, existem sistemas e estratégias de aquisição de imagens inovadores para aprimorar a separação de fluoróforos (por exemplo, o FluoSync - uma abordagem otimizada para a aquisição de imagens fluorescentes simultâneas, por multiplexação, usando uma única exposição) e aumentar o número de amostras fluorescentes até o necessário para o seu experimento.

Como encontrar as ferramentas certas

O câncer é complexo e requer uma miríade de métodos que incluem a aquisição de imagens resolvidas espaço-temporalmente, de espécimes vivos e de células individuais. Mais percepções de processos celulares relacionados ao câncer provavelmente surgirão de métodos com a maior resolução possível e da análise de imagens multiparamétricas. Abordagens como a microscopia confocal de fluorescência permitem o estudo de alvos múltiplos dentro de tecidos de estruturas celulares.

Técnicas de aquisição de imagens avançadas, como a super-resolução ou, mais recentemente, a aquisição de imagens de tempo de vida ou folha de luz, o ajudam a compreender melhor as interações moleculares e mecanismos reguladores por trás do início do tumor, de sua progressão e da resposta ao tratamento.

A microdissecção a laser ou a microscopia correlativa de luz e eletrônica (CLEM) permitem o estudo de estruturas receptoras espaciais em membranas e a organização genômica em núcleos de células.

Microscopia de superresolução Leica

A microscopia de superresolução supera o limite de difração da luz e permite aos investigadores estudar estruturas subcelulares em mais detalhes do que é possível com um microscópio confocal. São possíveis resoluções de até 20 nm; em biologia, isso representa o comprimento de 10 proteínas médias de ponta a ponta ou 60 pares de bases de DNA.

Microscopia de fluorescência

A fluorescência é um dos fenômenos físicos mais comumente usados na microscopia biológica e analítica, principalmente devido a sua alta sensibilidade e alta especificidade. A fluorescência é uma forma de luminescência.

Aquisição de imagens de tempo de vida de fluorescência

A microscopia de aquisição de imagens de tempo de vida de fluorescência (FLIM - Fluorescence lifetime imaging microscopy) é uma técnica de aquisição de imagens que utiliza as propriedades inerentes dos marcadores fluorescentes. Além de ter o espectro de emissões característico, cada molécula fluorescente tem um tempo de vida característico que reflete o tempo que o fluoróforo passa no estado excitado antes de emitir um fóton. 

Scroll to top