THUNDER Imager Model Organism THUNDER Imaging Systems Produtos Início Leica Leica Microsystems
  • Imagens de células vivas

    Alterando a perspectiva de componentes únicos de um microscópio a uma solução de imagens de células vivas completamente em funcionamento, a Leica Microsystems integra o microscópio, o software de…
    Read article
  • Pesquisa sobre peixe-zebra

    Para os melhores resultados durante a verificação, triagem, manipulação e aquisição de imagem, você precisa ver osdetalhes e estruturas que permitem tomar as decisões certas para os próximos passos em…
    Read article
  • Neurocientífica

    Are you working towards a better understanding of neurodegenerative diseases or studying the function of the nervous system? See how you can make breakthroughs with imaging solutions from Leica…
    Read article
  • Organismos modelo na pesquisa

    A model organism is a species used by researchers to study specific biological processes. They have similar genetic characteristics to humans and are commonly used in research areas such as genetics,…
    Read article
  • Virology

    Do your research interests focus on viral infection and disease? Find out how you can gain insights into virology with solutions for imaging and sample preparation from Leica Microsystems.
    Read article
  • Science Lab Topic: Fluorescence Microscopy

    Studying Autoimmune Disease

    This article discusses how autoimmune diseases, like systemic lupus erythematosus (SLE), can be studied more efficiently using thick, 3D kidney tissue specimens visualized with a THUNDER Imager . SLE…
    Read article
  • Science Lab Topic: Fluorescence Microscopy

    From Organs to Tissues to Cells: Analyzing 3D Specimens with Widefield Microscopy

    Obtaining high-quality data and images from thick 3D samples is challenging using traditional widefield microscopy because of the contribution of out-of-focus light. In this webinar, Falco Krüger…
    Read article
  • Science Lab Topic: Widefield Microscopy

    Studying Human Brain Development and Disease

    Neural spheroids created from human induced pluripotent stem cells (iPSCs) provide effective and novel tools for studying brain development, as well as the underlying pathological mechanisms of…
    Read article
  • Science Lab Topic: Widefield Microscopy

    An Introduction to Computational Clearing

    Many software packages include background subtraction algorithms to enhance the contrast of features in the image by reducing background noise. The most common methods used to remove background noise…
    Read article
  • iPSC cells
    Science Lab Topic: Widefield Microscopy

    Studying Natural Killer (NK) Cells Derived from Induced Pluripotent Stem Cells (iPSC)

    The study of natural killer (NK) cells holds tremendous promise for developing novel immunotherapies. NK cells derived from induced pluripotent stem cells (iPSCs) can be used to create an easily…
    Read article
  • Science Lab Topic: Fluorescence Microscopy

    Studying Adipose Tissue Development and Expansion

    This article discusses sharp, high-contrast imaging of whole mount adipose (fat) tissues specimens, which are thick and round (unsectioned), with a THUNDER Imager using Computational Clearing. Adipose…
    Read article
  • Science Lab Topic: Basics in Microscopy

    Getting Sharper 3D Images of Thick Biological Specimens with Widefield Microscopy

    Widefield fluorescence microscopy is often used to visualize structures in life science specimens and obtain useful information. With the use of fluorescent proteins or dyes, discrete specimen…
    Read article
  • Science Lab Topic: Fluorescence Microscopy

    IL-18 cytokine derived from the enteric nervous system is important for intestinal immunity

    Interleukin 18 (IL-18) is a proinflammatory cytokine, which induces cell-mediated immune reaction upon bacterial infection. In the intestine, it is known that IL-18 is produced in immune and…
    Read article
  • Science Lab Topic: Fluorescence Microscopy

    Cholesterol Homeostasis Modulates Platinum Sensitivity in Human Ovarian Cancer

    Ovarian cancer is one of the most severe types of cancers that women can suffer from during their lifetimes. It is the cancer’s tendency for frequent relapses and drug resistance that leads to…
    Read article
  • Science Lab Topic: Widefield Microscopy

    Computational Clearing - Enhance 3D Specimen Imaging

    This webinar is designed to clarify crucial specifications that contribute to THUNDER Imagers' transformative visualization of 3D samples and improvements within a researcher's imaging-related…
    Read article
  • Science Lab Topic: Widefield Microscopy

    THUNDER Imagers: High Performance, Versatility and Ease-of-Use for your Everyday Imaging Workflows

    This webinar will showcase the versatility and performance of THUNDER Imagers in many different life science applications: from counting nuclei in retina sections and RNA molecules in cancer tissue…
    Read article
  • Science Lab Topic: Fluorescence Microscopy

    Interview with Magali Mondin on THUNDER Imagers

    Magali Mondin, an engineer at the BIC (Bordeaux Imaging Center) in France, describes her experience using a THUNDER Imager in this interview. She had the opportunity to test extensively the THUNDER…
    Read article
  • Science Lab Topic: Widefield Microscopy

    Drosophila Testis Niche Stem Cells – Three Color Computational Clearing

    Differentiated living beings such as humans, but also a fruit fly or a plant, possess not only the differentiated cells which form specific tissues, but also those cells whose fate is not yet (or only…
    Read article
  • Science Lab Topic: Widefield Microscopy

    Alzheimer Plaques: fast Visualization in Thick Sections

    More than 60% of all diagnosed cases of dementia are attributed to Alzheimer’s disease. Typical of this disease are histological alterations in the brain tissue. So far, there is no cure for this…
    Read article
  • Science Lab Topic: Widefield Microscopy

    THUNDER Technology Note

    So far, widefield microscopy was not suitable to image larger volumes, since the contrast of the recorded fluorescence image is reduced by the background (BG) mainly originating from out of focus…
    Read article