Webinar

Adding Dimensions to Multiplex Molecular Imaging

Molecular imaging of living specimens offers a means to draw upon the growing body of high-throughput molecular data to better understand the underlying cellular and molecular mechanisms of complex events ranging from embryonic development to disease processes. However, imaging approaches are challenged by unavoidable tradeoffs between spatial resolution, temporal resolution, field of view and the limited photon budget. 

Authors

Topics & Tags

We are attempting to advance this tradeoff by constructing faster and more efficient light sheet microscopes that maintain subcellular resolution.  Our two-photon light-sheet microscope combines the deep penetration of two-photon microscopy and the speed of light sheet microscopy to generate images with more than ten-fold improved imaging speed and sensitivity. This combination of attributes permits 4D cell and molecular imaging with sufficient speed and resolution to generate unambiguous tracing of cells and signals in intact systems. 

To increase the 5th Dimension, the number of simultaneous labels, we are refining new multispectral image analysis tools that exceed the performance of our previous work on Linear Unmixing by orders of magnitude in speed, error propagation and accuracy. These new analysis tools permit rapid and unambiguous analyses of multiplex-labeled specimens. 

In parallel, we have refined label-free approaches so that imaging and sensing can be extended to patient-derived tissues and even human subjects. The low concentrations and low sensitivity of the techniques can make single cell approaches challenging.  We are refining fluorescence lifetime approaches (FLIM), combining it with multispectral tools to optimize intravital imaging in these challenging settings.

Combined, these imaging and analysis tools offer the multi-dimensional imaging required to follow key events in intact systems and allow us to use noise and variance as experimental tools rather than experimental limitations. 

Learning Objectives:

  • Biological imaging involves tradeoffs between resolution, speed, depth and field of view
  • Multiplex tools can increase the efficiency and the number of labels that can be imaged
  • Fluorescence lifetime is a powerful but underused tool for intrinsic and extrinsic labels
  • Phasor approaches can offer more efficient processing, especially in low light conditions

Register to watch the video

*
*
*
*
*
*
By clicking on the SUBMIT button, I confirm that I have reviewed and agree with Leica Microsystems GmbH Terms of Use and their Privacy Policy. I also understand my privacy choices as they pertain to my personal data, as detailed in the aforementioned Privacy Policy under ‘’Your Privacy Choices’’.

Interested to know more?

Talk to our experts. We are happy to answer all your questions and concerns.

Contact Us

Do you prefer personal consulting?

  • Leica Microsystems Inc.
    1700 Leider Lane
    Buffalo Grove, IL 60089 United States
    Office Phone : +1 800 248 0123
    Service Phone : 1 800 248 0223
    Fax : +1 847-236-3009

You will find a more detailed list of local contacts here.