Contact & Support
Header Image

The Microscopy Knowledge Portal

LEARN. SHARE. CONTRIBUTE. Science Lab, the knowledge portal of Leica Microsystems, offers scientific research and teaching material on the subjects of microscopy. The content is designed to support beginners, experienced practitioners and scientists alike in their everyday work and experiments. Explore interactive tutorials and application notes, discover the basics of microscopy as well as high-end technologies – become part of the Science Lab community and share your expertise! 

Latest Articles

  • See the Structure with Microscopy - Know the Composition with Laser Spectroscopy

    The advantages of a 2-in-1 materials analysis solution combining optical microscopy and laser induced breakdown spectroscopy (LIBS) for simultaneous visual and chemical inspection are described in this report. The basic principles of the 2-in-1 solution and a comparison between it and other common materials analysis methods, such scanning electron microscopy (SEM), are explained to demonstrate how a rapid, efficient workflow is achieved. A 2-in-1 analysis solution can reduce significantly the cost and time for obtaining material image and composition data. Such data are instrumental in assuring quality and reliability to make confident decisions quickly during production, quality control, failure analysis, and research and development in industries and fields, such as automotive and metallurgy.
    Read article
  • Free Webinar on-Demand: AirTeach Software

    Wi-Fi Education solutions help teachers to make class more interactive and inspiring. With network capable microscope cameras and the Leica AirLab App learning content gets transferred directly to students’ viewing devices. This promotes teamwork and makes sharing easy in the classroom and beyond.
    Read article
  • Free Webinar-on-Demand: Mechanical pre-preparation and ion milling for SEM observation

    See how the unique combination of pre-preparation system and ion milling system makes fast site specific sample preparation for Scanning Electron Microscopy or optical microscopy possible.
    Read article
  • Free Webinar On-Demand: New Cleanliness Workflow from Leica and Pall

    Obtaining cleanliness results rapidly, accurately, and reliably is a significant advantage for manufacturers and component suppliers. For this reason, Pall Corporation and Leica Microsystems have joined efforts to offer a new, unique workflow solution customizable to your individual needs. Join our free webinar to get a sneak preview on Leica Microsystems' new fully implemented LIBS (Laser Induced Breakdown Spectroscopy) system. This new landmark technology enables you to easily conduct fast and reliable optical and chemical cleanliness analysis with only one system. See for yourself how Leica Microsystems' new software and system solution facilitates and accelerates the identification of nature and source of particle contamination on components.
    Read article
  • DLS Sample Preparation: Using U-Shaped Glass Capillaries for Sample Mounting

    The TCS SP8 DLS microscope system from Leica Microsystems is an innovative concept which integrates the Light Sheet Microscopy technology into the SP8 confocal platform. Due to its unique optical architecture, samples can be mounted on standard glass bottom petri dishes and require little or no adaptation when compared to conventional mounting procedures. Here, we present a convenient way to prepare specimens quickly for light sheet imaging with the TCS SP8 DLS system.
    Read article
  • Laser Microdissection Publication List

    This monthly updated reference list demonstrates the major application fields for laser microdissection in life science research.
    Read article
  • The Fundamentals and History of Fluorescence and Quantum Dots

    At some point in your research and science career, you will no doubt come across fluorescence microscopy. This ubiquitous technique has transformed the way in which microscopists can image, tag and trace anything from whole organisms to single proteins and beyond. In this article, we will examine what is meant by "fluorescence", the history and basic physics behind its definition, the discovery and application of Green Fluorescent Protein (GFP) and a look at the rapidly expanding field of fluorescent probes including Quantum Dots.
    Read article
  • How to adapt grain size analysis of metallic alloys to your needs

    Metallic alloys are important for a variety of products in many industries. Several thousand standard alloys are currently in use and new ones with better performance are developed all the time to meet new demands. For example, there are multiple alloys of steel and aluminum which are used to build automobiles, trucks, planes, and trains.
    Read article
  • Multiphoton Microscopy – a Satisfied Wish List

    The colorful picture shows colon tumor cells, fluorescently labelled and lineage traced from a multicolor tracer. The gray color codes for the second harmonic generation (SHG) signal from Collagen 1. Lineage traced tumor cells are shown in magenta, blue, green, yellow and red. All channels were recorded with two-photon excitation, using the SP8 DIVE by Leica Microsystems. Sample and image were kindly provided by J. van Rheenen, H. Snippert, Utrecht (the Nederlands,) and I. Steinmetz, Leica Microsystems Mannheim.
    Read article
  • Free Webinar On-Demand: Practical Applications of Broad Ion Beam Milling

    Mechanical polishing can be time consuming and frustrating. It can also introduce unwanted artifacts when preparing cross-sectioned samples for electron backscatter diffraction (EBSD) in the scanning electron microscope (SEM) or light microscope investigation. In contrast, ion beam milling can eliminate undesirable artifacts that will hamper your analysis and interpretation.
    Read article
  • Free Webinar On-Demand: Revealing Cellular Dynamics with Millisecond Precision

    What if you can dissect the cellular dynamics with millisecond precision? What if you can unravel the morphological transformation of a neuron millisecond by millisecond using electron microscopy?
    Read article
  • Free Webinar On-Demand: Digital Microscopy in Earth Science

    Classical polarized light (compound) microscopes can only be used for prepared samples, because the working distance they offer is insufficient for whole samples. This means that thicker and bigger geological samples have to be sectioned and polished to fit under the limited working distance of a compound microscope. The Leica DVM 6 provides outstanding image quality, extra working distance and allows geologists to work with polished and unpolished samples (micro mounts, fossils, drilled cores …), make 3D reconstructions of their surfaces and enables classical petrographic work as well.
    Read article
  • Eyepieces, Objectives and Optical Aberrations

    For most microscope applications, there are generally only two sets of optics which are adjusted by the user, namely, the objectives and the eyepieces. Of course, this is assuming that the microscope is already corrected for Koehler Illumination during which the condenser and diaphragms are adjusted.
    Read article
  • Mission Impossible Accomplished: Tunable Colors for Non-descanning Detection

    Leica Microsystems’ 4Tune detector, the key component of the SP8 DIVE Deep In Vivo Explorer, provides spectrally tunable image recording with non-descanning detection. An innovative solution for multiparameter multiphoton microscopy. The colorful image on the right shows multiphoton microscopy of an unstained mouse skin section acquired using the 4Tune detector. The green color codes for autofluorescence of muscle tissue. Red shows second harmonic generation of fibers upon illumination with 900 nm. The blue pattern is generated by third harmonic generation at lipid boundaries from illumination at 1230 nm.
    Read article
  • Koehler Illumination: A Brief History and a Practical Set Up in Five Easy Steps

    The technique of Koehler Illumination is one of the most important and fundamental techniques in achieving optimum imaging in any given light microscope set-up. Although it should be routinely used as part of setting up a microscope, many microscopists are put off by thinking that the correct set-up is complex and time consuming and it is therefore still not widely practised. By getting to know the two main components of the microscope which are adjusted in this technique (the diaphragms and sub-stage condenser) in reality, correct set-up should only take a matter of minutes. A correctly aligned microscope can result in greatly improved images of uniform contrast and illumination as well as higher resolution and more detail. In this article, we will look at the history of the technique in addition to how to adjust the components in five easy steps.
    Read article