Live Cell Imaging

Leica Microsystems provides you with intelligent innovations in live-cell imaging. Our solutions help you get the best image quality while protecting your samples.

With the variety of fluorescent proteins and multicolored probes that have been developed, it is now possible to label virtually any molecule. The ability to visualize protein dynamics in vesicles, organelles, cells, and tissues has provided new insights into how cells function in healthy and disease states. These insights include the spatiotemporal dynamics of processes like mitosis, embryonic development, and cytoskeleton changes. When studying live cells, common obstacles include phototoxicity and photodamage. To capture fast biological processes, it is crucial to keep the cells healthy and obtain crisp images for reliable data that are free of artifacts. Live‐cell microscopy often requires a compromise between image quality and cell health. During imaging, certain environmental conditions must be maintained to avoid changes in the cells. 

A variety of high-performance Leica live cell imaging solutions can overcome these challenges for live-cell imaging enabling new information for cellular physiology and dynamics to be discovered. 

Simply get in touch!

Our experts on solutions for live cell imaging applications are happy to help you with their advice.

Your Live Cell Imaging Needs

To perform successful live-cell imaging experiments, using the right platform is critical. When choosing an optical microscope for live‐cell imaging, the following 3 variables should be considered: detector sensitivity (signal‐to‐noise ratio), specimen viability, and image-acquisition speed.

Methods suitable for live-cell applications enable visualization of the dynamics without causing cell damage, as it can affect the results.

Leica Microsystems offers the latest innovations in widefield and confocal imaging technologies for fast 3D live cell imaging with the THUNDER Imagers, Mica – the world’s first Microhub, STELLARIS confocal platform, and FLIM.

Live‐cell imaging is mainly performed with fluorescence microscopy. Widefield microscopy, providing flexible excitation and fast acquisition, is typically used to visualize cell dynamics and development over long times. Confocal microscopy is typically used to study subcellular dynamic events. Multiphoton microscopy allows excitation with longer wavelength light reducing photobleaching and extending cell viability. Finally, fluorescence lifetime imaging (FLIM) can be applied to study fast dynamic signaling events in cells.

Live Cell Imaging System DMi8

The modular DMi8 inverted microscope is the heart of the DMi8 S platform solution. For routine to live cell research, the DMi8 S platform is a complete solution. Whether you need to precisely follow the development of a single cell in a dish, screen through multiple assays, obtain single molecule resolution, or tease out behaviors of complex processes, a DMi8 S system will enable you to see more, see faster, and find the hidden.

Cell Viability & Dynamics During Live Cell Imaging

Leica Microsystems provides you with intelligent innovations in live-cell imaging. Our solutions help you get the best image quality while protecting your samples. Most cellular processes occur in 3 dimensions over time. Therefore, cells need to be imaged in four dimensions (XYZ and time) to obtain a complete picture. Time‐lapse imaging is used to capture cell events over timescales from seconds to months. Repeated imaging of cells at particular points in time is also possible. To protect cell viability during this process, live-cell imaging requires the temperature, pH, and humidity to be kept under control. Light exposure should also be at a minimum to avoid phototoxicity.

Leica Microsystems offers imaging solutions that help optimize your study of live cells, even over long periods of time. They provide the necessary image contrast and resolution to facilitate the analysis of dynamic events. Some Leica systems also enable high-speed imaging and absolute correlated labels without spatiotemporal mismatch between labels of the same time point, so no key cellular events are missed.

Live cell imaging with STELLARIS confocal platform

The STELLARIS platform provides you with solutions whether you need long acquisition times for high-resolution 3D reconstructions or the highest frame rates to capture rapid dynamic events.

STELLARIS is a completely re-imagined confocal microscope platform. STELLARIS confocal microscopes can be combined with all Leica modalities, including FLIM, STED, DLS, and CRS. With the STELLARIS confocal platform, we have re-imagined confocal microscopy to get you closer to the truth.

This confocal image shows one scan layer of the acoel worm Isodiametra pulchra. The following parts are stained: cyan: nuclei, green: stem cells, magenta: expression of the genes T-Brain/Eomes (gonads und oocytes). Left: anterior. The worm is about 1 mm of size. Photo: Aina Børve, Sars

Download The Guide to Live Cell Imaging

In life science research, live cell imaging is an indispensable tool to visualize cells in a state as in vivo as possible.

LEARN MORE

Live cell imaging related articles

Read our latest articles about Live Cell Imaging

The knowledge portal of Leica Microsystems offers scientific research and teaching material on the subjects of microscopy. The content is designed to support beginners, experienced practitioners and scientists alike in their everyday work and experiments.

More Articles

Combining spectrally resolved detection and fluorescence lifetime multiplexing

Live-Cell Fluorescence Lifetime Multiplexing Using Organic Fluorophores

On-demand video: Imaging more subcellular targets by using fluorescence lifetime multiplexing combined with spectrally resolved detection.

Harnessing Microfluidics to Maintain Cell Health During Live-Cell Imaging

VIDEO ON DEMAND - In this episode of MicaCam, we will use microfluidics to explore the effect of shear stress on cell morphology, examine the effect of nutrient replenishment on cellular growth during…
Living HeLa cells stained with WGA-488 (yellow), SPY-Actin (cyan), and SiR-Tubulin (magenta). Instant Computational Clearing (ICC) was applied.

How to Perform Dynamic Multicolor Time-Lapse Imaging

Live-cell imaging sheds light on diverse cellular events. As many of these events have fast dynamics, the microscope imaging system must be fast enough to record every detail. One major advantage of…
Two-color caspase assay with tile scan. U2OS cells were treated with the nuclear marker DRAQ5 (magenta) and CellEvent™ (yellow).

Following Multiple Events during Staurosporine Apoptosis

VIDEO ON DEMAND - In this episode of MicaCam, we show how adding additional markers to an apoptosis kit can markedly increase the amount of information a researcher can obtain from the same…
Cellular polarization dynamics before and after magneto-mechanical stimulation

Mechanically Stressed Cells under the Microscope

Traumatic brain injury, skin scarring, or fibrotic heart remodeling are examples for mechanical stress which cells and tissues are exposed to. In this article, the authors introduce a non-invasive,…
Protist Paramecium (Paramecium tetraurelia) stained to show the nucleus

AI-Enabled Spatial Analysis of Complex 3D Datasets

VIDEO ON DEMAND - This edition of MicaCam offers practical advice on the extraction of publication grade insights from microscopy images. Our special guest Luciano Lucas (Leica Microsystems) will…
MDCK cysts on day 9

How To Perform Fast & Stable Multicolor Live-Cell Imaging

With the help of live-cell imaging researchers gain insights into dynamic processes of living cells up to whole organisms. This includes intracellular as well as intercellular activities. Protein or…
Zebrafish heart showing the ventricle with an injury in the lower area

Cardiomyocyte Proliferation Upon Heart Injury in Zebrafish

VIDEO ON DEMAND - This edition of MicaCam focuses on the study of the zebrafish (Danio rerio) whose heart cells can fully regenerate after injury.

TauInteraction – Studying Molecular Interactions with TauSense

Fluorescence microscopy constitutes one of the pillars in life sciences and is a tool commonly used to unveil cellular structure and function. A key advantage of fluorescence microscopy resides in the…
Images of smooth muscle cells during wound healing. Courtesy L.S. Shankman, Ph.D., University of Virginia.

Studying Wound Healing of Smooth Muscle Cells

This article discusses how wound healing of cultured smooth muscle cells (SMCs) in multiwell plates can be reliably studied over time with less effort using a specially configured Leica inverted…

About Live Cell Imaging

Besides the structural organization of cells or organs, dynamic processes are a major contributor to a functioning biological entity. Naturally, these processes can be best observed in living cells with non-invasive techniques like optical methods, collectively called “live-cell imaging” methods. Live-cell imaging covers all techniques where live cells are observed with microscopes – from the observation of embryogenesis with stereo microscopes, via cell growth studies with compound microscopes, until studies of physiological states of cells or cellular transport using fluorescent dyes or proteins. Although being highly demanding for both, experimenter and equipment (e.g. imaging systems, climate control), live-cell imaging techniques deliver results that are indispensable for present-day research.

Interested to know more?

Talk to our experts. We are happy to answer all your questions and concerns.

Contact Us

Do you prefer personal consulting? Show local contacts

Scroll to top