Contact us online

Coherent Raman Scattering Microscopy Publication List

CRS (Coherent Raman Scattering) microscopy is an umbrella term for label-free methods that image biological structures by exploiting the characteristic, intrinsic vibrational contrast of their molecules. The two most important CRS techniques are Coherent Anti-Stokes Raman Scattering (CARS) and Stimulated Raman Scattering (SRS). The biochemical image contrast of CRS is in many ways complementary to the molecular contrast obtained in fluorescence microscopy. A second crucial advantage of these methods is that they preserve the specimen/sample in a near pristine state. This reference list presents current and basic papers on CRS microscopy.


Topics & Tags

Review Articles

Biological imaging of chemical bonds by stimulated Raman scattering microscopy.
Hu F, Shi L, Min W.
Nat Methods. 2019 Sep;16(9):830-842. doi: 10.1038/s41592-019-0538-0. Epub 2019 Aug 30.

Cellular Imaging Using Stimulated Raman Scattering Microscopy.
Hill AH, Fu D.
Anal Chem. 2019 Jul 9. doi: 10.1021/acs.analchem.9b02095. [Epub ahead of print]

Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine.
Cheng JX, Xie XS.
Science. 2015 Nov 27;350(6264):aaa8870. doi: 10.1126/science.aaa8870.

Quantitative chemical imaging with stimulated Raman scattering microscopy.
Fu D.
Curr Opin Chem Biol. 2017 Aug;39:24-31. doi: 10.1016/j.cbpa.2017.05.002. Epub 2017 May 22.

Coherent Raman Scattering Microscopy in Biology and Medicine.
Zhang C, Zhang D, Cheng JX.
Annu Rev Biomed Eng. 2015;17:415-45. doi: 10.1146/annurev-bioeng-071114-040554. Epub 2015 Oct 22.

Chemically sensitive bioimaging with coherent Raman scattering.
Camp CH, Cicerone MT.
Nat Photonics. 2015 Apr 29;9:295-305. doi: 10.1038/nphoton.2015.60.

Applications of coherent Raman scattering microscopies to clinical and biological studies.
Schie IW, Krafft C, Popp J.
Analyst. 2015 Jun 21;140(12):3897-909. doi: 10.1039/c5an00178a. Epub 2015 Mar 26.

Biological imaging with coherent Raman scattering microscopy: a tutorial.
Alfonso-García A, Mittal R, Lee ES, Potma EO.
J Biomed Opt. 2014 Jul;19(7):71407. doi: 10.1117/1.JBO.19.7.071407.

Nonlinear vibrational microscopy applied to lipid biology.
Zumbusch A, Langbein W, Borri P.
Prog Lipid Res. 2013 Oct;52(4):615-32. doi: 10.1016/j.plipres.2013.07.003. Epub 2013 Sep 16.

Selected publications using Leica instruments

Label-free characterization of Amyloid-β-plaques and associated lipids in brain tissues using stimulated Raman scattering microscopy
Schweikhard V, Baral A, Krishnamachari V, Hay WC, Fuhrmann M

Chemical fingerprinting of single glandular trichomes of Cannabis sativa by Coherent anti-Stokes Raman scattering (CARS) microscopy,
Paul Ebersbach, Felix Stehle, Oliver Kayser, Erik Freier.
BMC Plant Biology201818:275 doi:

Quantitative mapping of triacylglycerol chain length and saturation using broadband CARS microscopy,
A. Paul, Y.J. Wang, C. Brännmark, S. Kumar, M. Bonn, S. H. Parekh.

Cell-Nanoparticle Interactions at Sub(nanometer) Resolution Analysed by Electron Microscopy and Correlative Coherent Anti-Stokes Raman Scattering,
Saarinen J, Gütter F, Lindman M, Agopov M, Fraser-Miller SJ, Scherließ R, Jokitalo E, Santos HA, Peltonen L, Isomäki A, Strachan CJ.
Biotechnol J. 2018 Oct 23. doi: 10.1002/biot.201800413. 

Understanding Dissolution and Crystallization with Imaging: A Surface Point of View,
Novakovic D, Isomäki A, Pleunis B, Fraser-Miller SJ, Peltonen L, Laaksonen T, Strachan CJ.
Mol Pharm. 2018 Oct 9. doi: 10.1021/acs.molpharmaceut.8b00840. 

Preparation and characterization of multi-component tablets containing co-amorphous salts: Combining multimodal non-linear optical imaging with established analytical methods,
Ojarinta R, Saarinen J, Strachan CJ, Korhonen O, Laitinen R.
Eur J Pharm Biopharm. 2018 Nov;132:112-126. doi: 10.1016/j.ejpb.2018.09.013. Epub 2018 Sep 22.

Chemical imaging of protein hydrogels undergoing alkaline dissolution by CARS microscopy.
Xu B, Chen XD, Mercadé-Prieto R.
Food Chem. 2018 Jun 30;252:16-21. doi: 10.1016/j.foodchem.2018.01.056. Epub 2018 Jan 6.

Label-free identification of myopathological features with coherent anti-Stokes Raman scattering.
Niedieker D, GrosserÜschkamp F, Schreiner A, Barkovits K, Kötting C, Marcus K, Gerwert K, Vorgerd M.
Muscle Nerve. 2018 Apr 16. doi: 10.1002/mus.26140. [Epub ahead of print]

Chemical basis for alteration of an intraocular lens using a femtosecond laser.
Bille, J. F. et al.
Biomed. Opt. Express8, 1390-1404, (2017). 

Variability in responses observed in human white adipose tissue models.
Abbott RD, Borowsky FE, Alonzo CA, Zieba A, Georgakoudi I, Kaplan DL.
J Tissue Eng Regen Med. 2018 Mar;12(3):840-847. doi: 10.1002/term.2572. Epub 2017 Nov 10.

Ostreococcus tauri is a high-lipid content green algae that extrudes clustered lipid droplets
Smallwood CR, Chrisler W, Chen JH, Patello E, Thomas M, Boudreau R, Ekman A, Wang H, McDermott G, Evans JE

Noninvasive Diagnosis of High-Grade Urothelial Carcinoma in Urine by Raman Spectral Imaging.
Yosef HK, Krauß SD, Lechtonen T, Jütte H, Tannapfel A, Käfferlein HU, Brüning T, Roghmann F, Noldus J, Mosig A, El-Mashtoly SF, Gerwert K.
Anal Chem. 2017 Jun 20;89(12):6893-6899. doi: 10.1021/acs.analchem.7b01403. Epub 2017 Jun 5.

Role for formin-like 1-dependent acto-myosin assembly in lipid droplet dynamics and lipid storage.
Pfisterer SG, Gateva G, Horvath P, Pirhonen J, Salo VT, Karhinen L, Varjosalo M, Ryhänen SJ, Lappalainen P, Ikonen E.
Nat Commun. 2017 Mar 31;8:14858. doi: 10.1038/ncomms14858.

Insights into Caco-2 cell culture structure using coherent anti-Stokes Raman scattering (CARS) microscopy.
Saarinen J, Sözeri E, Fraser-Miller SJ, Peltonen L, Santos HA, Isomäki A, Strachan CJ.
Int J Pharm. 2017 May 15;523(1):270-280. doi: 10.1016/j.ijpharm.2017.03.015. Epub 2017 Mar 12.

Noninvasive Diagnosis of High-Grade Urothelial Carcinoma in Urine by Raman Spectral Imaging.
Yosef HK, Krauß SD, Lechtonen T, Jütte H, Tannapfel A, Käfferlein HU, Brüning T, Roghmann F, Noldus J, Mosig A, El-Mashtoly SF, Gerwert K.
Anal Chem. 2017 Jun 20;89(12):6893-6899. doi: 10.1021/acs.analchem.7b01403. Epub 2017 Jun 5.

Virtual staining of colon cancer tissue by label-free Raman micro-spectroscopy.
Petersen D, Mavarani L, Niedieker D, Freier E, Tannapfel A, Kötting C, Gerwert K, El-Mashtoly SF.
Analyst. 2017 Apr 10;142(8):1207-1215. doi: 10.1039/c6an02072k.

Coupling of vinculin to F-actin demands Syndecan-4 proteoglycan.
Cavalheiro RP, Lima MA, Jarrouge-Bouças TR, Viana GM, Lopes CC, Coulson-Thomas VJ, Dreyfuss JL, Yates EA, Tersariol ILS, Nader HB.
Matrix Biol. 2017 Nov;63:23-37. doi: 10.1016/j.matbio.2016.12.006. Epub 2017 Jan 4.

Direct visualization of the arterial wall water permeability barrier using CARS microscopy.
Lucotte BM, Powell C, Knutson JR, Combs CA, Malide D, Yu ZX, Knepper M, Patel KD, Pielach A, Johnson E, Borysova L, Dora KA, Balaban RS.
Proc Natl Acad Sci U S A. 2017 May 2;114(18):4805-4810. doi: 10.1073/pnas.1620008114. Epub 2017 Apr 3.

Lewy pathology in Parkinson's disease consists of a crowded organellar membranous medley
Sarah H. Shahmoradian, Christel Genoud, Alexandra Graff-Meyer, Juergen Hench, Tim Moors, Gabriel Schweighauser, Jing Wang, Kenneth N. Goldie, Rosmarie Suetterlin, Daniel Castano-Diez, Paula Perez-Navarro, Evelien Huisman, Sabine Ipsen, Angela Ingrassia, Yvonne de Gier, Annemieke J.M. Rozemuller, Anne Da Paepe, Johannes Erny, Andreas Staempfli, Joerg Hoernschemeyer, Frederik Grosserueschkamp, Daniel Niedieker, Samir F. El-Mashtoly, Marialuida Quadri, Wilfred F.J. van Ijcken, Vincenzo Bonifati,  Klaus Gerwert, Bernd Bohrmann, Stephan Frank, Markus Britschgi, Henning Stahlberg, Wilma van de Berg, Mathias E. Lauer

Watching dance of the molecules - CARS microscopy.
[Article in Polish; Abstract available in Polish from the publisher]
Korczyński J, Kubiak K, Węgłowska E.
Postepy Biochem. 2017;63(1):44-52.

Label-free in situ imaging of oil body dynamics and chemistry in germination
Gustav Waschatko, Nils Billecke, Sascha Schwendy, Henriette Jaurich, Mischa Bonn, Thomas A. Vilgis, and Sapun H. Parekh
J R Soc Interface. 2016 Oct; 13(123): 20160677.  doi:  10.1098/rsif.2016.0677

Continuous grading of early fibrosis in NAFLD using label-free imaging: A proof-of-concept study.
Pirhonen, J. et al.
PloS one11, e0147804, (2016). 

Raman spectroscopy and coherent anti-Stokes Raman scattering imaging: prospective tools for monitoring skeletal cells and skeletal regeneration.
Moura, C. C., Tare, R. S., Oreffo, R. O. C. & Mahajan, S.
J R Soc Interface13, 20160182-, (2016).  

Elucidation of Compression-Induced Surface Crystallization in Amorphous Tablets Using Sum Frequency Generation (SFG) Microscopy.
Mah, P. T. et al.
Pharmaceutical Research, 1-14, (2016). 

19F labelled glycosaminoglycan probes for solution NMR and non-linear (CARS) microscopy.
Lima, M. A. et al. 
Glycoconjugate Journal, 1-6, (2016).  

A novel multi-modal platform to image molecular and elemental alterations in ischemic stroke.
Caine, S. et al.
Neurobiology of Disease91, 132-142, (2016). 

Label-free visualization of cholesteatoma in the mastoid and tympanic membrane using CARS microscopy
Zou J, Isomäki A, Hirvonen T, Aarnisalo A, Jero J, Pyykkö I
Journal of Otology 2016; 11(3): 127. doi:10.1016/j.joto.2016.09.001

Multimodal non-linear optical imaging for the investigation of drug nano-/microcrystal-cell interactions.
Darville, N. et al. 
Eur J Pharm Biopharm 96, 338-348, (2015). 

Biochemical and Bioimaging Evidence of Cholesterol in Acquired Cholesteatoma.
Thorsted B, Bloksgaard M, Groza A, Schousboe LP, Færgeman NJ, Sørensen JA, Svane-Knudsen V, Brewer JR.
Ann Otol Rhinol Laryngol. 2016 Aug;125(8):627-33. doi: 10.1177/0003489416642784. Epub 2016 Apr 15.

Lipid droplets as a novel cargo of tunnelling nanotubes in endothelial cells
Ksenia Astanina, Marcus Koch, Christian Jüngst, Andreas Zumbusch, and Alexandra K. Kiemer
Sci Rep. 2015; 5: 11453.  Published online 2015 Jun 22. doi:  10.1038/srep11453

Fully automated registration of vibrational microspectroscopic images in histologically stained tissue sections.
Yang C, Niedieker D, Grosserüschkamp F, Horn M, Tannapfel A, Kallenbach-Thieltges A, Gerwert K, Mosig A.
BMC Bioinformatics. 2015 Nov 25;16:396. doi: 10.1186/s12859-015-0804-9.

Colocalization of fluorescence and Raman microscopic images for the identification of subcellular compartments: a validation study.
Krauß SD, Petersen D, Niedieker D, Fricke I, Freier E, El-Mashtoly SF, Gerwert K, Mosig A.
Analyst. 2015 Apr 7;140(7):2360-8. doi: 10.1039/c4an02153c.

Perilipin-related protein regulates lipid metabolism in C. elegans.
Chughtai AA, Kaššák F, Kostrouchová M, Novotný JP, Krause MW, Saudek V, Kostrouch Z, Kostrouchová M
PeerJ. 2015 Sep 1;3:e1213. doi: 10.7717/peerj.1213. eCollection 2015.

Investigation of protein distribution in solid lipid particles and its impact on protein release using coherent anti-Stokes Raman scattering microscopy.
Christophersen PC, Birch D, Saarinen J, Isomäki A, Nielsen HM, Yang M, Strachan CJ, Mu H.
J Control Release. 2015 Jan 10;197:111-20. doi: 10.1016/j.jconrel.2014.10.023. Epub 2014 Nov 3.

Adipose triglyceride lipase is involved in the mobilization of triglyceride and retinoid stores of hepatic stellate cells.
Taschler U, Schreiber R, Chitraju C, Grabner GF, Romauch M, Wolinski H, Haemmerle G, Breinbauer R, Zechner R, Lass A, Zimmermann R.
Biochim Biophys Acta. 2015 Jul;1851(7):937-45. doi: 10.1016/j.bbalip.2015.02.017. Epub 2015 Feb 27.

Seipin is involved in the regulation of phosphatidic acid metabolism at a subdomain of the nuclear envelope in yeast.
Wolinski H, Hofbauer HF, Hellauer K, Cristobal-Sarramian A, Kolb D, Radulovic M, Knittelfelder OL, Rechberger GN, Kohlwein SD.
Biochim Biophys Acta. 2015 Nov;1851(11):1450-64. doi: 10.1016/j.bbalip.2015.08.003. Epub 2015 Aug 12.

Microscopic and spectroscopic techniques to investigate lipid droplet formation and turnover in yeast.
Wolinski H, Kohlwein SD.
Methods Mol Biol. 2015;1270:289-305. doi: 10.1007/978-1-4939-2309-0_21.

Study of carbamate-modified disiloxane in porous PVDF-HFP membranes: new electrolytes/separators for lithium-ion batteries.
Jeschke, S., Mutke, M., Jiang, Z., Alt, B. & Wiemhofer, H. D.
Chemphyschem15, 1761-1771, (2014).  

Automated identification of subcellular organelles by coherent anti-stokes Raman scattering.
El-Mashtoly SF, Niedieker D, Petersen D, Krauss SD, Freier E, Maghnouj A, Mosig A, Hahn S, Kötting C, Gerwert K.
Biophys J. 2014 May 6;106(9):1910-20. doi: 10.1016/j.bpj.2014.03.025.

Lipid droplet autophagy in the yeast Saccharomyces cerevisiae.
van Zutphen T, Todde V, de Boer R, Kreim M, Hofbauer HF, Wolinski H, Veenhuis M, van der Klei IJ, Kohlwein SD.
Mol Biol Cell. 2014 Jan;25(2):290-301. doi: 10.1091/mbc.E13-08-0448. Epub 2013 Nov 20.

The emergence of lipid droplets in yeast: current status and experimental approaches.
Radulovic M, Knittelfelder O, Cristobal-Sarramian A, Kolb D, Wolinski H, Kohlwein SD.
Curr Genet. 2013 Nov;59(4):231-42. doi: 10.1007/s00294-013-0407-9. Epub 2013 Sep 21.

Remodeling of lipid droplets during lipolysis and growth in adipocytes.
Paar M, Jüngst C, Steiner NA, Magnes C, Sinner F, Kolb D, Lass A, Zimmermann R, Zumbusch A, Kohlwein SD, Wolinski H.
J Biol Chem. 2012 Mar 30;287(14):11164-73. doi: 10.1074/jbc.M111.316794. Epub 2012 Feb 6.

Quantitative imaging of lipid metabolism in yeast: from 4D analysis to high content screens of mutant libraries.
Wolinski H, Bredies K, Kohlwein SD.
Methods Cell Biol. 2012;108:345-65. doi: 10.1016/B978-0-12-386487-1.00016-X.

Quantitative assessment of collagen fibre orientations from two-dimensional images of soft biological tissues.
Schriefl AJ, Reinisch AJ, Sankaran S, Pierce DM, Holzapfel GA.
J R Soc Interface. 2012 Nov 7;9(76):3081-93. Epub 2012 Jul 4.

Cancer Research

Virtual staining of colon cancer tissue by label-free Raman micro-spectroscopy.
Petersen D, et al.  Mavarani L, Niedieker D, Freier E, Tannapfel A, Kötting C, Gerwert K, El-Mashtoly SF.
Analyst. 2017 Apr 10;142(8):1207-1215. doi: 10.1039/c6an02072k.

Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy.
Ji M, Lewis S, Camelo-Piragua S, Ramkissoon SH, Snuderl M, Venneti S, Fisher-Hubbard A, Garrard M, Fu D, Wang AC, Heth JA, Maher CO, Sanai N, Johnson TD, Freudiger CW, Sagher O, Xie XS, Orringer DA.
Sci Transl Med. 2015 Oct 14;7(309):309ra163. doi: 10.1126/scitranslmed.aab0195.

Rapid histology of laryngeal squamous cell carcinoma with deep-learning based stimulated Raman scattering microscopy.
Zhang L, Wu Y, Zheng B, Su L, Chen Y, Ma S, Hu Q, Zou X, Yao L, Yang Y, Chen L, Mao Y, Chen Y, Ji M.
Theranostics 2019, Vol. 9, Issue 9

Lipid Desaturation Is a Metabolic Marker and Therapeutic Target of Ovarian Cancer Stem Cells.
Li J, Condello S, Thomes-Pepin J, Ma X, Xia Y, Hurley TD, Matei D, Cheng JX.
Cell Stem Cell. 2017 Mar 2;20(3):303-314.e5. doi: 10.1016/j.stem.2016.11.004. Epub 2016 Dec 29.

Cholesterol esterification inhibition and imatinib treatment synergistically inhibit growth of BCR-ABL mutation-independent resistant chronic myelogenous leukemia.
Bandyopadhyay S, Li J, Traer E, Tyner JW, Zhou A, Oh ST, Cheng JX.
PLoS One. 2017 Jul 18;12(7):e0179558. doi: 10.1371/journal.pone.0179558. eCollection 2017.

Monitoring neoadjuvant therapy responses in rectal cancer using multimodal nonlinear optical microscopy.
Lian-Huang Li,Zhi-Fen Chen, Xing-Fu Wang, Xing Liu, Wei-Zhong Jiang, Shuang-Mu Zhuo, Li-Wei Jiang, Guo-Xian Guan, and Jian-Xin Chen
Oncotarget. 2017 Dec 5; 8(63): 107323–107333. Published online 2017 Nov 3. doi:  10.18632/oncotarget.22366

Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressiveness.
Yue S, Li J, Lee SY, Lee HJ, Shao T, Song B, Cheng L, Masterson TA, Liu X, Ratliff TL, Cheng JX.
Cell Metab. 2014 Mar 4;19(3):393-406. doi: 10.1016/j.cmet.2014.01.019.

Visualization of Breast Cancer Metabolism Using Multimodal Nonlinear Optical Microscopy of Cellular Lipids and Redox State.
Hou J, Williams J, Botvinick EL, Potma EO, Tromberg BJ.
Cancer Res. 2018 May 15;78(10):2503-2512. doi: 10.1158/0008-5472.CAN-17-2618. Epub 2018 Mar 13.

Multimodal Imaging/Histopathology

Hierarchical deep convolutional neural networks combine spectral and spatial information for highly accurate Raman-microscopy-based cytopathology.
Krauß SD, Roy R, Yosef HK, Lechtonen T, El-Mashtoly SF, Gerwert K, Mosig A.
J Biophotonics. 2018 Oct;11(10):e201800022. doi: 10.1002/jbio.201800022. Epub 2018 Jul 5.

Histological coherent Raman imaging: a prognostic review.
Cicerone MT, Camp CH.
Analyst. 2017 Dec 18;143(1):33-59. doi: 10.1039/c7an01266g.

Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy.
Ji M, Lewis S, Camelo-Piragua S, Ramkissoon SH, Snuderl M, Venneti S, Fisher-Hubbard A, Garrard M, Fu D, Wang AC, Heth JA, Maher CO, Sanai N, Johnson TD, Freudiger CW, Sagher O, Xie XS, Orringer DA.
Sci Transl Med. 2015 Oct 14;7(309):309ra163. doi: 10.1126/scitranslmed.aab0195.

Fluorescence lifetime imaging of endogenous biomarker of oxidative stress.
Datta R, Alfonso-García A, Cinco R, Gratton E.
Sci Rep. 2015 May 20;5:9848. doi: 10.1038/srep09848.

Label-free multiphoton microscopy reveals altered tissue architecture in hippocampal sclerosis.
Uckermann O, Galli R, Leupold S, Coras R, Meinhardt M, Hallmeyer-Elgner S, Mayer T, Storch A, Schackert G, Koch E, Blümcke I, Steiner G, Kirsch M.
Epilepsia. 2017 Jan;58(1):e1-e5. doi: 10.1111/epi.13598. Epub 2016 Nov 7.

Pseudo-HE images derived from CARS/TPEF/SHG multimodal imaging in combination with Raman-spectroscopy as a pathological screening tool.
Bocklitz TW, Salah FS, Vogler N, Heuke S, Chernavskaia O, Schmidt C, Waldner MJ, Greten FR, Bräuer R, Schmitt M, Stallmach A, Petersen I, Popp J.
BMC Cancer. 2016 Jul 26;16:534. doi: 10.1186/s12885-016-2520-x.

Multimodal nonlinear microscopy of head and neck carcinoma - toward surgery assisting frozen section analysis.
Heuke S, Chernavskaia O, Bocklitz T, Legesse FB, Meyer T, Akimov D, Dirsch O, Ernst G, von Eggeling F, Petersen I, Guntinas-Lichius O, Schmitt M, Popp J.
Head Neck. 2016 Oct;38(10):1545-52. doi: 10.1002/hed.24477. Epub 2016 Apr 21.

A quantitative framework for the analysis of multimodal optical microscopy images
Andrew J. Bower, Benjamin Chidester, Joanne Li, Youbo Zhao, Marina Marjanovic, Eric J. Chaney, Minh N. Do and Stephen A. Boppart
Quant Imaging Med Surg. 2017 Feb; 7(1): 24–37. doi:  10.21037/qims.2017.02.07

High-Speed Coherent Raman Fingerprint Imaging of Biological Tissues.
Camp CH Jr, Lee YJ, Heddleston JM, Hartshorn CM, Hight Walker AR, Rich JN, Lathia JD, Cicerone MT.
Nat Photonics. 2014;8:627-634.


Lewy pathology in Parkinson's disease consists of crowded organelles and lipid membranes.
Shahmoradian SH, Lewis AJ, Genoud C, Hench J, Moors TE, Navarro PP, Castaño-Díez D, Schweighauser G, Graff-Meyer A, Goldie KN, Sütterlin R, Huisman E, Ingrassia A, Gier Y, Rozemuller AJM, Wang J, Paepe A, Erny J, Staempfli A, Hoernschemeyer J, Großerüschkamp F, Niedieker D, El-Mashtoly SF, Quadri M, Van IJcken WFJ, Bonifati V, Gerwert K, Bohrmann B, Frank S, Britschgi M, Stahlberg H, Van de Berg WDJ, Lauer ME.
Nat Neurosci. 2019 Jul;22(7):1099-1109. doi: 10.1038/s41593-019-0423-2. Epub 2019 Jun 24.

Label-free imaging of amyloid plaques in Alzheimer’s disease with stimulated Raman scattering microscopy,
Minbiao Ji, Michal Arbel, Lili Zhang, Christian W. Freudiger, Steven S. Hou, Dongdong Lin, Xinju Yang, Brian J. Bacskai and X. Sunney Xie.
Sci Adv. 2018 Nov; 4(11): eaat7715. Published online 2018 Nov 16. doi: 10.1126/sciadv.aat7715

Label-Free Vibrational Spectroscopic Imaging of Neuronal Membrane Potential.
Lee HJ, Zhang D, Jiang Y, Wu X, Shih PY, Liao CS, Bungart B, Xu XM, Drenan R, Bartlett E, Cheng JX.
J Phys Chem Lett. 2017 May 4;8(9):1932-1936. doi: 10.1021/acs.jpclett.7b00575. Epub 2017 Apr 17.

Label-free Imaging of Neurotransmitter Acetylcholine at Neuromuscular Junctions with Stimulated Raman Scattering.
Fu D, Yang W, Xie XS.
J Am Chem Soc. 2017 Jan 18;139(2):583-586. doi: 10.1021/jacs.6b10727. Epub 2016 Dec 30.

Bioorthogonal chemical imaging of metabolic activities in live mammalian hippocampal tissues with stimulated Raman scattering.
Hu F, Lamprecht MR, Wei L, Morrison B, Min W.
Sci Rep. 2016 Dec 21;6:39660. doi: 10.1038/srep39660.

Monitoring peripheral nerve degeneration in ALS by label-free stimulated Raman scattering imaging.
Tian F, Yang W, Mordes DA, Wang JY, Salameh JS, Mok J, Chew J, Sharma A, Leno-Duran E, Suzuki-Uematsu S, Suzuki N, Han SS, Lu FK, Ji M, Zhang R, Liu Y, Strominger J, Shneider NA, Petrucelli L, Xie XS, Eggan K.
Nat Commun. 2016 Oct 31;7:13283. doi: 10.1038/ncomms13283.

Probing pain pathways with light.
Wang F, Bélanger E, Paquet ME, Côté DC, De Koninck Y.
Neuroscience. 2016 Dec 3;338:248-271. doi: 10.1016/j.neuroscience.2016.09.035. Epub 2016 Oct 1.

Plaque-associated lipids in Alzheimer’s diseased brain tissue visualized by nonlinear microscopy
Juris Kiskis, Helen Fink, Lena Nyberg, Jacob Thyr, Jia-Yi Li and Annika Enejder
Sci Rep. 2015; 5: 13489. Published online 2015 Aug 27. doi:  10.1038/srep13489


Raman Imaging of Nanocarriers for Drug Delivery.
Vanden-Hehir S, Tipping WJ, Lee M, Brunton VG, Williams A, Hulme AN.
Nanomaterials (Basel). 2019 Mar 3;9(3). pii: E341. doi: 10.3390/nano9030341.

Detecting and Quantifying Microscale Chemical Reactions in Pharmaceutical Tablets by Stimulated Raman Scattering Microscopy.
Figueroa B, Nguyen T, Sotthivirat S, Xu W, Rhodes T, Lamm MS, Smith RL, John CT, Su Y, Fu D.
Anal Chem. 2019 May 21;91(10):6894-6901. doi: 10.1021/acs.analchem.9b01269. Epub 2019 Apr 30.

In Situ Stimulated Raman Scattering (SRS) Microscopy Study of the Dissolution of Sustained-Release Implant Formulation.
Francis AT, Nguyen TT, Lamm MS, Teller R, Forster SP, Xu W, Rhodes T, Smith RL, Kuiper J, Su Y, Fu D.
Mol Pharm. 2018 Dec 3;15(12):5793-5801. doi: 10.1021/acs.molpharmaceut.8b00965. Epub 2018 Nov 8.

Imaging the Intracellular Distribution of Tyrosine Kinase Inhibitors in Living Cells with Quantitative Hyperspectral Stimulated Raman Scattering
Fu D, Zhou J, Zhu WS, Manley PW, Wang YK, Hood T, Wylie A, Xie XS.
Nat Chem. 2014 Jul; 6(7): 614–622.  doi: 10.1038/nchem.1961

Stimulated Raman scattering microscopy: an emerging tool for drug discovery.
Tipping WJ, Lee M, Serrels A, Brunton VG, Hulme AN.
Chem Soc Rev. 2016 Apr 21;45(8):2075-89. doi: 10.1039/c5cs00693g. Epub 2016 Feb 3.

Determination of the Subcellular Localization and Mechanism of Action of Ferrostatins in Suppressing Ferroptosis.
Gaschler MM, Hu F, Feng H, Linkermann A, Min W, Stockwell BR.
ACS Chem Biol. 2018 Apr 20;13(4):1013-1020. doi: 10.1021/acschembio.8b00199. Epub 2018 Mar 13.

Multimodal Nonlinear Optical Imaging for Sensitive Detection of Multiple Pharmaceutical Solid-State Forms and Surface Transformations.
Novakovic D, Saarinen J, Rojalin T, Antikainen O, Fraser-Miller SJ, Laaksonen T, Peltonen L, Isomäki A, Strachan CJ.
Anal Chem. 2017 Nov 7;89(21):11460-11467. doi: 10.1021/acs.analchem.7b02639. Epub 2017 Oct 18.

Intracellular imaging of docosanol in living cells by coherent anti-Stokes Raman scattering microscopy.
You S, Liu Y, Arp Z, Zhao Y, Chaney EJ, Marjanovic M, Boppart SA.
J Biomed Opt. 2017 Jul 1;22(7):70502. doi: 10.1117/1.JBO.22.7.070502.


Metabolic activity induces membrane phase separation in endoplasmic reticulum.
Shen Y, Zhao Z, Zhang L, Shi L, Shahriar S, Chan RB, Di Paolo G and Min W.
PNAS 2017, 114(51):13394-13399. DOI: 10.1073/pnas.1712555114

Two-color vibrational imaging of glucose metabolism using stimulated Raman scattering.
Long R, Zhang L, Shi L, Shen Y, Hu F, Zeng C, Min W.
Chem Commun (Camb). 2018 Jan 7;54(2):152-155. doi: 10.1039/c7cc08217g. Epub 2017 Dec 8.

Microscopy tools for the investigation of intracellular lipid storage and dynamics.
Daemen S, van Zandvoort MAMJ, Parekh SH, Hesselink MKC.
Mol Metab. 2015 Dec 31;5(3):153-163. doi: 10.1016/j.molmet.2015.12.005. eCollection 2016 Mar.

Imaging complex protein metabolism in live organisms by stimulated Raman scattering microscopy with isotope labeling.
Wei L, Shen Y, Xu F, Hu F, Harrington JK, Targoff KL, Min W.
ACS Chem Biol. 2015 Mar 20;10(3):901-8. doi: 10.1021/cb500787b. Epub 2015 Jan 15.

Assessing cholesterol storage in live cells and C. elegans by stimulated Raman scattering imaging of phenyl-Diyne cholesterol.
Lee HJ, Zhang W, Zhang D, Yang Y, Liu B, Barker EL, Buhman KK, Slipchenko LV, Dai M, Cheng JX.
Sci Rep. 2015 Jan 22;5:7930. doi: 10.1038/srep07930.

Label-free DNA imaging in vivo with stimulated Raman scattering microscopy.
Lu FK, Basu S, Igras V, Hoang MP, Ji M, Fu D, Holtom GR, Neel VA, Freudiger CW, Fisher DE, Xie XS.
Proc Natl Acad Sci U S A. 2015 Sep 15;112(37):11624-9. doi: 10.1073/pnas.1515121112. Epub 2015 Aug 31.


Beyond endoscopic assessment in inflammatory bowel disease: real-time histology of disease activity by non-linear multimodal imaging.
Chernavskaia O, Heuke S, Vieth M, Friedrich O, Schürmann S, Atreya R, Stallmach A, Neurath MF, Waldner M, Petersen I, Schmitt M, Bocklitz T, Popp J.
Sci Rep. 2016 Jul 13;6:29239. doi: 10.1038/srep29239.

Lipid biochemical changes detected in normal appearing white matter of chronic multiple sclerosis by spectral coherent Raman imaging
K. W. C. Poon, C. Brideau, R. Klaver, G. J. Schenk, J. J. Geurts and P. K. Stys
Chem Sci. 2018 Feb 14; 9(6): 1586–1595. Published online 2018 Jan 2. doi:  10.1039/c7sc03992a

Plant Research/Biofuels

In situ chemically specific mapping of agrochemical seed coatings using stimulated Raman scattering microscopy.
Wang CC, Moorhouse S, Stain C, Seymour M, Green E, Penfield S, Moger J.
J Biophotonics. 2018 May 17:e201800108. doi: 10.1002/jbio.201800108. [Epub ahead of print]

Visualizing chemical functionality in plant cell walls.
Zeng Y, Himmel ME, Ding SY.
Biotechnol Biofuels. 2017 Nov 30;10:263. doi: 10.1186/s13068-017-0953-3. eCollection 2017.

Probing the metabolic heterogeneity of live Euglena gracilis with stimulated Raman scattering microscopy.
Wakisaka Y, Suzuki Y, Iwata O, Nakashima A, Ito T, Hirose M, Domon R, Sugawara M, Tsumura N, Watarai H, Shimobaba T, Suzuki K, Goda K, Ozeki Y.
Nat Microbiol. 2016 Aug 1;1(10):16124. doi: 10.1038/nmicrobiol.2016.124.

Materials Science

Operando and three-dimensional visualization of anion depletion and lithium growth by stimulated Raman scattering microscopy,
Cheng Q, Wei L, Liu Z, Ni N, Sang Z, Zhu B, Xu W, Chen M, Miao Y, Chen LQ, Min W, Yang Y. 
Nature Communications volume 9, Article number: 2942 (2018) 

Quantitative Chemical Imaging of Nonplanar Microfluidics.
Gelber MK, Kole MR, Kim N, Aluru NR, Bhargava R.
Anal Chem. 2017 Feb 7;89(3):1716-1723. doi: 10.1021/acs.analchem.6b03943. Epub 2017 Jan 9.

Coherent anti-Stokes Raman scattering microscopy of single nanodiamonds
Iestyn Pope, Lukas Payne, George Zoriniants, Evan Thomas, Oliver Williams, Peter Watson, Wolfgang Langbein and Paola Borri
Nat Nanotechnol. 2014 Nov; 9(11): 940–946. doi:  10.1038/nnano.2014.210

Vibrational Tags

Metabolic activity induces membrane phase separation in endoplasmic reticulum.
Shen Y, Zhao Z, Zhang L, Shi L, Shahriar S, Chan RB, Di Paolo G and Min W.
PNAS 2017, 114(51):13394-13399. DOI: 10.1073/pnas.1712555114

Supermultiplexed optical imaging and barcoding with engineered polyynes.
Hu F, Zeng C, Long R, Miao Y, Wei L, Xu Q, Min W.
Nat Methods. 2018 Mar;15(3):194-200. doi: 10.1038/nmeth.4578. Epub 2018 Jan 15.

Applications of vibrational tags in biological imaging by Raman microscopy.
Zhao Z, Shen Y, Hu F, Min W.
Analyst. 2017 Oct 23;142(21):4018-4029. doi: 10.1039/c7an01001j.

Super-multiplex vibrational imaging
Lu Wei, Zhixing Chen, Lixue Shi, Rong Long, Andrew V. Anzalone, Luyuan Zhang, Fanghao Hu, Rafael Yuste, Virginia W. Cornish and Wei Min
Nature. 2017 Apr 27; 544(7651): 465–470. Published online 2017 Apr 19. doi:  10.1038/nature22051

Chemically-activatable alkyne-tagged probe for imaging microdomains in lipid bilayer membranes
Satoshi Yamaguchi, Taku Matsushita, Shin Izuta, Sumika Katada, Manami Ura, Taro Ikeda, Gosuke Hayashi, Yuta Suzuki, Koya Kobayashi, Kyoya Tokunaga, Yasuyuki Ozeki and Akimitsu Okamoto
Sci Rep. 2017; 7: 41007. Published online 2017 Jan 24. doi:  10.1038/srep41007

Early CRS Publications

Video-rate molecular imaging in vivo with stimulated Raman scattering.
Saar BG, Freudiger CW, Reichman J, Stanley CM, Holtom GR, Xie XS.
Science. 2010 Dec 3;330(6009):1368-70. doi: 10.1126/science.1197236.

Coherent Raman Scattering Fiber Endoscopy.
Saar BG, Johnston RS, Freudiger CW, Xie XS, Seibel EJ
Opt Lett 36 (2011) 2396–2398.

Picosecond spectral coherent anti-Stokes Raman scattering (CARS) imaging with principal component analysis of meibomian glands.
Lin C-Y, Suhalim JL, Nien C, Miljkovic MD, Diem M, Jester J and Potma EO
J Biomed Opt 16 (2011) 021104.

Fast and long term lipid droplet tracking with CARS microscopy.
Jüngst C, Winterhalder M, Zumbusch A
J Biophot 4 (2011) 435–441.

Quantitative detection of chemical compounds in human hair with coherent anti-Stokes Raman scattering.
Zimmerley M, Lin C-Y, Oertel DC, Marsh JM, Ward JL and Potma EO
J Biomed Opt 14 (2009) 044019.

Coherent anti-Stokes Raman Scattering Microscopy.
Müller M, Zumbusch A
ChemPhysChem 8:15 (2007) 2156–2170.

Nonperturbative chemical imaging of organelle transport in living cells with coherent anti-stokes Raman scattering microscopy.
Nan X, Potma EO and Xie XS
Biophys J 91 (2006) 728–735.

Coherent anti-stokes Raman scattering microscopy. 
Xie XS, Cheng JX and Potma E
Handbook of biological confocal microscopy, 595-606 (2006).

Chemical imaging of tissue in vivo with video-rate coherent anti-stokes Raman scattering microscopy.
Evans CL, Potma E, Puoris’Haag M, Côté D, Lin CP and Xie XS
Harvard University, Cambridge, MA, September 22, 2005.

CARS for Biology and Medicine.
Potma EO and Xie XS
Optics and Photonics News 15 (2004) 40–45.

Real-time visualization of intracellular hydrodynamics in single living cells.
Potma EO, de Boeij WP, van Haastert PJ and Wiersma DA.
Proc Natl Acad Sci USA 98 (2001) 1577–1582.

Vibrational Microscopy Using Coherent Anti-Stokes Raman Scattering.
Zumbusch A, Holtom GR, Xie XS
Phys Rev Lett  82 (1999) 4142.

Coherent anti–Stokes Raman spectroscopy.
Begley RF, Harvey AB and Byer RL
Applied Physics Letters 25:7 (1974), Microwave Laboratory, Stanford University, Stanford, California 94305.

Study of Optical Effects Due to an Induced Polarization Third Order in the Electric Field Strength.
Maker PD, Terhune RW
Physical Review 137:3A (1965) 801–818.