Super-Resolution Microscopy

Super-resolution microscopes and nanoscopes overcome the diffraction limit of light and allow investigators to study subcellular structures in greater detail than achieved with a standard confocal microscope. With the possibility of resolutions down to 30 nm with STED as well as sub-cellular dynamics can be studied at the nanoscale.

Sub-diffraction colocalization analysis reveals interactions unprecedented detail. Enabling novel discoveries to be made in the fields of virology, immunology, neuroscience and cancer, super-resolution is on its way to becoming the new gold standard in light microscopy.

Explore life’s true nature in unprecedented detail.

Need Assistance?

Contact a local specialist for advice on the right super-resolution or nanoscopy system for your needs.

Super-resolution and nanoscopy products

Filter by Area of Application
STELLARIS - Confocal Microscope Platform

STELLARIS

With the STELLARIS confocal platform, we have re-imagined confocal microscopy to get you closer to the truth.

STED Microscope STELLARIS

STELLARIS STED & STELLARIS 8 STED

STELLARIS brings the full power and potential of STED in a fully integrated system.

About Super-Resolution

It is about 20 years since super-resolution microscopy and nanoscopy arrived on the light microscopy scene, but it already plays an important role, particularly in life sciences – without superseding conventional confocal microscopy. The term super-resolution refers to methods that surpass the so-called diffraction limit. Applications are wide ranging – from dynamic vesicle movements to fluorescence images of sub-cellular structures, allowing researchers to see details in unprecedented detail. LIGHTNING Image Information Extraction is a super-resolution method that exploits the sub-diffraction lateral resolution capabilities of confocal microscopy. With LIGHTNING on a SP8 confocal microscope you can image multiple fluorophores simultaneously – without the need for sequential scanning. You can capture cellular details and observe dynamics with resolution down to 120 nm. As a truly infinitely super-resolving technology, STED nanoscopy offers resolution down to 30 nanometers. STED provides instant super-resolved imaging with multiple channels and approaching isotropic super-resolution in three dimensions. Underlining the impact of super-resolution microscopy, the 2014 Nobel Prize for Chemistry was awarded jointly to Eric Betzig, Stefan W. Hell and William E. Moerner "for the development of super-resolved fluorescence microscopy".

Related Articles

Read our latest articles about Super-Resolution Microscopy

The knowledge portal of Leica Microsystems offers scientific research and teaching material on the subjects of microscopy. The content is designed to support beginners, experienced practitioners and scientists alike in their everyday work and experiments.

More Articles

Benefits of Combining STED and Lifetime

In this interview, Professor Alberto Diaspro talks about the advantages of the White Light Laser and the TauSTED capabilities of STELLARIS 8 STED. He speaks about his experience with the confocal…
Read article

Effects of Clearing Media on Tissue Transparency and Shrinkage

This study comprehensively evaluates the effects of different clearing media on tissue transparency and shrinkage by comparing freshly dissected dipteran fly brains with their cleared equivalents.…
Read article

Visualization of Submitochondrial Protein Distributions

By allowing visualization of submitochondrial protein distributions, fluorescence nanoscopy offers significant advantages for understanding cell death control. How cells manage, and control…
Read article

DNA Replication in Cancer Cells

DNA synthesis can be impeded by collisions between the DNA replication machinery and co-transcriptional R-loops leading to a major source of genomic instability in cancer cells. In this paper we…
Read article

Super-Resolution Microscopy Image Gallery

Due to the diffraction limit of light, traditional confocal microscopy cannot resolve structures below ~240 nm. Super-resolution microscopy techniques, such as STED, PALM or STORM or some…
Read article

Regulators of Actin Cytoskeletal Regulation and Cell Migration in Human NK Cells

Dr. Mace will describe new advances in our understanding of the regulation of human NK cell actin cytoskeletal remodeling in cell migration and immune synapse formation derived from confocal and…
Read article

Benefits of TauContrast to Image Complex Samples

In this interview, Dr. Timo Zimmermann talks about his experience with the application of TauSense tools and their potential for the investigation of demanding samples such as thick samples or…
Read article

Time-resolved STED microscopy

Introduced more than 30 years ago, stimulated emission depletion (STED) microscopy has raised to a standard and widely used method for imaging in the life sciences. Thanks to continuous technological…
Read article

Microscopy in Virology

The coronavirus SARS-CoV-2, causing the Covid-19 disease effects our world in all aspects. Research to find immunization and treatment methods, in other words to fight this virus, gained highest…
Read article

New Light Shed on the Nanodomain Organization of the Endoplasmic Reticulum (ER)

The endoplasmic reticulum (ER) is a continuous membrane organelle in charge of protein synthesis, lipid synthesis and detoxification. The ER structure is described in terms of smooth peripheral…
Read article
Cover glomerulus

The Guide to STED Sample Preparation

This guide is intended to help users optimize sample preparation for stimulated emission depletion (STED) nanoscopy, specifically when using the TCS SP8 STED 3X nanoscope from Leica Microsystems. It…
Read article

Extending Nanoscopy Possibilities with STED and exchangeable fluorophores

When it comes to STED Nanoscopy, keeping high signal-to-noise is key to achieve the best possible resolution in fixed and living cells. This can be challenging in the case of experiments in 3D and/or…
Read article

See More Than Just Your Image

Despite the emergence of new imaging methods in recent years, true 3D resolution is still achieved by Confocal Laser Scanning Microscopy (CLSM). Through a combination of novel, extremely fast scanning…
Read article

Simultaneously Measuring Image Features and Resolution in Live-Cell STED Images

Reliable interpretation and quantification of cellular features in fluorescence microscopy requires an accurate estimate of microscope resolution. This is typically obtained by measuring the image of…
Read article

Observing Malaria Infection at the Right Spot in the Human Host

Malaria is a life-threatening disease transmitted through the bites of mosquitoes infected with protozoan parasites. The most common and dangerous type of malaria is caused by the parasite Plasmodium…
Read article

Super-resolved STED spectroscopy

Molecular interactions are key in cellular signalling. They are often ruled or rendered by the mobility of the involved molecules.
Read article

STED Nanoscopy at the forefront of cancer research

Alison Dun is the postdoctoral facility manager for the Edinburgh Super-Resolution Imaging Consortium (ESRIC), Heriot-Watt University, Edinburgh, UK. She has used a large range of microscope…
Read article

Researchers Find a “Digital” Mechanism Behind Neuronal Changes from Learning

Neurons react to learning and memory by activating synaptic connections. The mechanisms behind this fundamental process are complex and poorly understood. Researchers at Thomas Jefferson University…
Read article

Interested to know more?

Talk to our experts. We are happy to answer all your questions and concerns.

Contact Us

Do you prefer personal consulting?

  • Leica Microsystems Inc.
    1700 Leider Lane
    Buffalo Grove, IL 60089 United States
    Office Phone : +1 800 248 0123
    Service Phone : 1 800 248 0223
    Fax : +1 847-236-3009

You will find a more detailed list of local contacts here.