Contact Us

Laser Microdissection LMD

Laser Microdissection, also known as LMD or LCM (Laser Capture Microdissection), is a contact- and contamination-free method for isolating specific single cells or entire areas of tissue from a wide variety of tissue samples. The thickness, texture and preparation technique of the original tissue are relatively unimportant. The dissectate is then available for further molecular biological methods such as PCR, real-time PCR, proteomics and other analytical techniques. Laser microdissection is now used in a large number of research fields, e.g. neurology, cancer research, plant analysis, forensics or climate research. The method is meanwhile also applied for manipulation of cell cultures or for microengraving of coverslips.

Our LMD Systems are perfect tools to optimize DNA-Workflows (Genomics), RNA-Workflows (Transcriptomics) and Proteomic-Workflows as they allow to precisely define and collect pure starting material for analysis under visual control.

Contact Us For Personal Support

Please contact us if you would like to have personal expert advice on our microscopy solutions for laser microdissection.

The Leica LMD process

Related articles

Read our latest articles about Laser Microdissection

The knowledge portal of Leica Microsystems offers scientific research and teaching material on the subjects of microscopy. The content is designed to support beginners, experienced practitioners and scientists alike in their everyday work and experiments.

More Articles
Single cell datasets

Exploring Subcellular Spatial Phenotypes with SPARCS

Discover spatially resolved CRISPR screening (SPARCS), a platform for microscopy-based genetic screening for spatial subcellular phenotypes at the human genome scale.
How is microscopy used in spatial biology - Teaserimage

How is Microscopy Used in Spatial Biology? A Microscopy Guide

Different spatial biology methods in microscopy, such as multiplex imaging, are helping to better understand tissue landscapes. Learn more in this microscopy guide.
Image of murine-brain tissue showing a region removed with UV laser microdissection.

RNA Quality after Different Tissue Sample Preparation

The influence of sample preparation and ultraviolet (UV) laser microdissection (UV LMD) on the quality of RNA from murine-brain tissue cryo-sections is described in this article. To obtain good…

Dissecting Proteomic Heterogeneity of the Tumor Microenvironment

This lecture will highlight cutting edge applications in applying laser microdissection and microscaled quantitative proteomics and phosphoproteomics to uncover exquisite intra- and inter-tumor…

20 Years of Leica Laser Microdissection

Phenotype-genotype correlations are key for insight. From Eye to Insight is therefore fitting perfectly to Leica Microsystems and in particular to laser microdissection. Laser Microdissection, also…

How to improve your Biomarker Discovery Workflow with Laser Microdissection

Biomarkers can be used as indicators of certain diseases, such as cancer. The tumor microenvironment moved into the spotlight in this concern. It is in close interaction with the tumor itself.…

Microscopy in Virology

The coronavirus SARS-CoV-2, causing the Covid-19 disease effects our world in all aspects. Research to find immunization and treatment methods, in other words to fight this virus, gained highest…

Improving RNA Analysis with Laser Microdissection

Parkinson’s disease is a progressive neurodegenerative disorder connected with cell death of dopamine-releasing neurons in the brain. Differences in gene expression between individual…

How to improve your Alzheimer Protein Analysis with Laser Microdissection

Brain Research: Collect pure starting material for proteomics - Improve your workflow with Laser Microdissection - Many brain diseases result from protein malfunction, misfolding and agglutination.…

How to improve your DNA Mutation Analysis Workflow with Laser Microdissection

DNA mutations lead to abnormal proteins or missing functional proteins, which can cause cells to multiply uncontrollably and become cancerous. To find and understand the underlying mutation for a…
Background image
Scroll to top