Story

Five Advantages of Inverted Over Upright Microscopes in Industrial Applications

With inverted microscopes, you look at samples from below since their optics are placed under the sample, with upright microscopes you look at samples from above. Traditionally, inverted microscopes are used for life science research, because gravity makes samples sink to the bottom of a holder with aqueous solution and you don’t see a lot from above. But for some time, inverted microscopy has become increasingly popular for industrial applications as well. We have taken a look which advantages inverted microscopy holds for industrial applications.

Authors

Topics & Tags

1) An inverted microscope gives you greater freedom than an upright one

For upright microscopes, the size of the sample is limited to an average height of 80 mm and a weight of 3 kg, depending also on the objective that is being used. This limitation does not apply to inverted microscopes. Because the optics are below the stage, the sample is placed above the objectives. This means that users have greater working distance and can work with huge and heavy samples that weigh up to 30 kg. So if you work with big and heavy samples, or with samples that differ considerably in size and weight, inverted microscopes provide you the freedom you need.

Fig. 1: Left: light path of an inverted microscope. Right: an inverted microscope with a large sample.

2) Inverted microscopes enable you to look at more samples in a shorter period of time

With an inverted microscope, you simply place your sample on the stage, focus onto the surface once and image it. Finished. The sample stays focused for all magnifications and further samples of the same sort are in focus alike.

With an upright microscope the workflow spans more tasks operators need to perform: You need to lower the stage, move it out, remove the sample holder and take a new one, place the sample on the holder and protect it and use a sample press to level the sample surface, before you change to a lower magnification to position. Operators need to practice all of these steps and, still, all different steps bear the risk of failure every time they are performed.

For untrained operators, the placement of samples can be a daunting task – with an inverted microscope, placing the sample on the stage becomes child’s play and requires less steps to perform as well.

Another point is: All of the steps described for upright microscopy take time that adds up, especially if you have to look at many samples one after the other. Let us assume an experienced user operates an upright microscope. Even if only five seconds per step are needed, a user of the inverted microscope would beat his colleague by far: Below is an example of the user working with an upright microscope versus the user working with an inverted microscope such as the Leica DMi8 for industrial applications. Their task is to analyze a standard metallographic sample.

ActionUprighttotalInvertedtotal
Lower the stage5 sec.5
Move the stage out5 sec.10
Remove the sample holder/take a new one5 sec.15
Place the sample holder on the holder and protect it5 sec.20
Use a sample press to level the sample surface5 sec.25
Change to lower magnification for positioning5 sec.305 sec.5
Place sample back onto the stage, move back, refocus10 sec.40510

Tab. 1: Workflow for upright versus inverted microscopes.

According to this assumption, the inverted microscopes enables you to change up to four times faster between samples compared to analysis on an upright microscope, so you can reach a higher throughput with an inverted microscope.

3) 使用倒置显微镜时物镜不会压碎样本

物镜会压碎样本早已是众所周知的秘密。正置显微镜的这种风险最大。这种问题一旦产生,您不仅要购买新的物镜,还要将样本丢弃掉。大多数情况下,无法立即获得备用物镜而是需要重新订购。这就导致了样本产出效率的下降,而如果没有第二台显微镜可用,则最坏情况是导致工作的完全中断。

倒置显微镜的设计有助于大幅降低将物镜压迫样本的风险。首先,物镜位于载物台下方,因此得到了更多的保护。其次,诸如 Leica DMi8 等工业应用仪器具有上方对焦停止功能,通过定义转换器的上止点来提供额外的安全性。因此,在保护您投资的同时,您可以专注于任务工作而不必花时间担心工具和样本可能受到的损害。

4) Inverted microscopes save you time and money in sample preparation

Sample preparation is limited, because the sample can be taken as is and put on the stage. Additional, only one side of the sample needs to be processed. You save time as you do not need to embed the sample, nor do you need to cut out parts of bigger samples. While handling the sample on the microscope, there is no need to level the sample using a sample press. Instead of seven sample preparation steps, you only need to do two. And this saves you time and money.

Fig. 2: Left: Sample with polished surface for an inverted microscope. Right: For an upright microscope, the sample has to be mounted on a sample holder.

5) An inverted microscope works in the same direction the world does

If you observe a sample with an upright microscopes, your brain has a nut to crack: When you move the stage to the left, the image of the sample that you see through the eyepieces moves to the right due to the construction of the instrument. And vice versa, of course.

If you observe a sample with an inverted microscope such as the Leica DMi8 for industrial applications, the image of the sample moves in the same direction as the stage. It behaves the way we have learned things move in the world. Especially for untrained users this is a real alleviation of their work, because they do not have to think about the direction in which they want to move the sample, but just do it as if they had no optics to look through. And whatever you don’t have to think about while doing it saves time and therefore speeds up your process.

Interested to know more?

Talk to our experts. We are happy to answer all your questions and concerns.

Contact Us

Do you prefer personal consulting?

  • Leica Microsystems Inc.
    1700 Leider Lane
    Buffalo Grove, IL 60089 United States
    Office Phone : +1 800 248 0123
    Service Phone : 1 800 248 0223
    Fax : +1 847-236-3009

You will find a more detailed list of local contacts here.