Neurosurgery Microscopes

Leica Microsystems offers a range of surgical microscope solutions to support neurosurgeons in the most complex microsurgery applications. Our cutting-edge neurosurgery microscopes provide optimal and reliable visualization, including built-in fluorescence filters and innovative GLOW 800 augmented reality fluorescence.

They are designed to perfectly address surgeons’ needs, offering brilliant illumination, upgradability, as well as adjustable viewing accessories to support ergonomics. Furthermore, our solutions for neurosurgery feature heads-up display, facilitating challenging and new operating procedures and new approaches in neurosurgery.

Need Assistance?

Contact a local imaging specialist for expert advice on the right neurosurgery microscope for your needs and budget.

Card Icon

Leading visualization with FusionOptics technology can also be supplemented with fluorescence imaging, and GLOW augmented reality fluorescence, our latest ground-breaking technology, which is available for our premium overhead microscopes.

Card Icon

To augment surgical insights intraoperatively data from other sources, e.g. leading IGS systems and neuroendoscopes, or DICOM can be injected into the eyepieces and displayed on HD screens.

Card Icon

4K 3D on-screen viewing and recording are also available to supplement intraoperative visualization, facilitate new operating approaches with Heads-up-Display (HUD), and support surgical teaching.

Applications of Neurosurgery Operating Microscopes

Neurosurgeons rely on surgical microscopes to visualize the surgical field and the fine anatomical details of brain structures in order to perform a wide range of surgical procedures with high precision.

Applications of neurosurgery operating microscopes can include the following:

  • Brain aneurysm repair
  • Tumor resections
  • Arteriovenous malformation (AVM) treatment
  • Cerebral artery bypass surgery
  • Epilepsy surgery
  • Spine surgery

Leica microscopes for neurosurgery feature innovative, integratable technologies that enhance the surgeon's vision through an augmented reality.  In vascular surgery, for example, GLOW800 augmented reality (AR) fluorescence allows the neurosurgeon to clearly visualize blood flow in real time.

Treatment of unruptured MCA & PCOM aneurysms with microsurgical clipping visualized using GLOW800

Challenges of Neurosurgery Microscopy

Neurosurgeons operate in deep and narrow cavities, while navigating through delicate tissue and locating anatomical structures with vitally important functions.

Achieving sufficient illumination and depth of field, as well as a large enough and unobstructed field of view are some of the main challenges of using microscopy in neurosurgery.

Simultaneous and clear visualization of blood flow in neurovascular procedures, as well as differentiating between different tissue types in tumor resection surgery are some of the most important challenges of modern neurosurgery.

Finally, poor ergonomics resulting in musculoskeletal pain and reduced productivity remains an important issue facing neurosurgeons, impacting their quality of life and career longevity.

One Augmented View in Vascular Neurosurgery

GLOW800 augmented reality (AR) fluorescence and ICG create a simultaneous white-light and real-time fluorescent blood flow view, creating a crisp visual delineation between cerebral anatomy and blood flow.

This advanced feature offers a single augmented image of cerebral anatomy in natural color and real-time vascular flow, eliminating interruptions and the need to switch between the natural microscope image and the flat black and white NIR video.

See the natural color of tissue, experience full depth perception, and get a real-time augmented view of blood flow for increased confidence to make precise treatment decisions during vascular neurosurgery.

Augmenting Insights with Neurosurgical Microscopes

During delicate and complex neurosurgery procedures, optimally preserving healthy brain tissue remains one of the most significant challenges. Image-guided surgery (IGS) and robotic control play an increasingly important role in neurosurgical interventions, as they facilitate intraoperative surgical decision-making and help surgeons achieve optimal patient outcomes.

Leica offers neurosurgical microscopes compatible with leading neuro navigation systems allowing image injection of IGS systems directly into the surgeon's eyepieces or onto a 3D 4K screen, creating an augment surgical view. With this cutting-edge technology, neurosurgeons no longer need to look away from the surgical view, ensuring efficient and uninterrupted workflow. 

Learn about the Brainlab microscope navigation software, which is compatible with the Arveo neurosurgery microscope from Leica Microsystems, courtesy of BrainLab AG.

Enhanced View with Fluorescence Filters

Leica Microsystems is a pioneer in the field of fluorescence microscopy technology, developing innovative fluorescent modules for various medical applications.

The surgical microscopes of the M530 range* feature the TriFluoro technology, helping medical professionals see more and make decisions with more confidence. TriFluoro enables up to three modes of integrated fluorescence:

  • FL560 fluorescence filter: Get a single, real-time view of fluorescent and non-fluorescent areas with clear differentiation and high contrast during aneurysm repair.
  • FL400 fluorescence filter**: When used with 5-aminolevulinic acid (5-ALA) this filter supports resection procedures by allowing precise differentiation of tumor tissue from healthy brain tissue.
  • FL800 intraoperative video-angiography module: When used in conjunction with ICG fluorescent dye, this feature allows neurosurgeons to clearly visualize blood flow in real-time.

*TriFluoro and GLOW800 are not available with PROvido
**Please check with your local Leica Microsystems representative for product registration status.

Adaptability and Enhanced Ergonomics of Leica Neurosurgery Operating Microscopes

Leica neurosurgery microscopes provide great maneuverability, allowing optimal positioning and enhanced ergonomics for both the surgeon and the resident during lengthy procedures.

Recent advances in 3D exoscopic surgery via the heads-up display herald a new era in neurosurgery. In addition, this method significantly improves ergonomic positioning for surgeons. The heads-up display also allows everyone in the OR to see the same image as the surgeon on a 4K screen in 3D, improving training and documentation.

Adaptable neurosurgery microscopes should further offer the following features:

  • Positioning freedom and easy maneuverability, allowing smooth movement of the microscope with one hand.
  • Adaptable binoculars that can be positioned and angled to fit specific operating requirements.
  • Intuitive and easy-to-reach microscope controls, including programmable footswitch and handles.
  • Resistance to vibrations and sturdy design.

Ergonomic benefits of heads-up surgery in neurovascular procedures with the ARveo neurosurgery microscope from Leica.

Integration with Other Devices and Technologies

Leica offers a range of accessories compatible with our neurosurgery microscope solutions to meet the needs of neurosurgeons for increased efficiency, uninterrupted workflow and augmented surgical insights.

The ARveo and M530 OHX neurosurgical microscopes from Leica Microsystems provide the following advanced features:

  • Augmented Reality fluorescence by the GLOW AR Platform
  • IGS system integration of leading neuro navigation providers
  • Fluorescence filters FL560, FL400 and FL800
  • CaptiView Image injection system display of endoscopic and IGS images directly in the eyepieces
  • External 3D 4K Screens perfectly suited for exoscopic surgery
  • Imaging and recording systems
  • Variety of binoculars and objective lenses
  • Non-slip handles
  • Stand-mounted monitors of various sizes

Important Considerations for Selecting a Neurosurgery Microscope

Powerful and Safe Illumination: Light management systems in neurosurgery microscopes need to facilitate work in narrow and deep cavities, while avoiding risk of damaging highly delicate tissue. BrightCare Plus technology from Leica controls the light intensity in relation to the working distance, ensuring optimal illumination while protecting sensitive tissue.

High Optical Quality: A large depth of field, high resolution and true-to-life color representation are required for accurate visualization of small and intricate anatomical structures. The FusionOptics technology from Leica provides a fully focused deep view into narrow cavities, ensuring seamless workflow with no interruptions to refocus.

Open Architecture and Upgradability: To serve as a long-term investment, the neurosurgery microscope should offer integration options with other technologies and devices, such as visualization aids for Augmented Reality, fluorescence filters, lasers, patient information systems, neuro navigation systems and endoscopes.

Ergonomics and Flexibility: Adaptable microscope parts, as well as options for exoscopic surgery with heads-up display allow for optimal ergonomics during surgical procedures. 

Surgical microscopes for use in Neurosurgery & Spine

Filter by Area of Application
Digital Visualization Microscope for Neurosurgery ARveo 8

ARveo 8

ARveo 8 unites information from AR fluorescence, IGS systems, and endoscopic image feeds providing an enhanced visualization for more informed and precise neurosurgery.

Spine Microscope Leica M530 OHX

Leica M530 OHX

Precision surgical microscope for neurosurgery, spine & plastic reconstructive surgery

Leica M530 OHX

Premium surgical microscope for neurosurgery


Image injection accessory

Leica M530 OH6

Sophisticated surgical microscope for complex neurosurgery

The Leica M25 F20 surgical microscope for otolaryngology, and neuro, spine and ENT surgery.

Leica M525 F20

Compact surgical microscope. Combining brilliant optics with precise maneuverability.

Leica FL560 - Fluorescence excitation and observation for fluorophores of specific characteristics

Leica FL560

Leica FL560 is designed to enable fluorescence observation of fluorophores with an excitation peak from 460-500 nm (blue) and emission observation of >510 nm.

Leica M720 FL400 fluorescence module 400nm/blue

Leica FL400

Blue Light Fluorescence Module

Leica FL800

For intra-operative fluorescence-aided videoangiography, surgeons can observe blood flow to determine the patency of vessels.

Related Articles

Read our latest articles about Neurosurgery Microscopes

The knowledge portal of Leica Microsystems offers scientific research and teaching material on the subjects of microscopy. The content is designed to support beginners, experienced practitioners and scientists alike in their everyday work and experiments.

More Articles

GLOW800 Augmented Reality fluorescence in Moyamoya disease treatment. Image courtesy of Prof. Dr. Feres Chaddad

How AR Helps in the Surgical Treatment of Moyamoya Disease

Moyamoya disease is a rare chronic occlusive cerebrovascular disorder characterized by progressive stenosis in the terminal portion of the internal carotid artery and an abnormal vascular network at…
Read article

Optimal Visualization in Brain Surgery

This case study “Treatment of the Galassi type III arachnoid cyst with the M530 OHX surgical microscope from Leica Microsystems” documents the procedure step by step and shows the visualization…
Read article

How to use a Surgical Microscope as an Operating Room Nurse

Surgical microscopes play an essential role in the modern microsurgery procedures. It provides the surgeon, assistant and operating room staff with a magnified and illuminated high-quality image of…
Read article

How to Improve Hospital Reputation: Boosting Your Brand with AR

More and more hospitals are working on bringing their brand to life. In a changing and challenging environment, strong brands have the potential to effectively position and differentiate hospitals. …
Read article

Enhanced Views in Bypass and AVM Surgeries with Fluorescent Filters

Leica Microsystems is a pioneer in the field of fluorescence microscopy technology, developing innovative fluorescent modules for various medical applications. Our TriFluoro filter concept enables up…
Read article

Advanced Visualization in Spine Surgery

There have been meaningful advances in spine surgery in recent years. Minimally Invasive Spine Surgery (MISS) techniques provide significant benefits, helping to minimize surgical trauma, improve…
Read article

How Augmented Reality is Transforming Vascular Neurosurgery

Augmented Reality is changing surgery, with new information helping to improve the precision and safety of procedures. This is especially true in vascular neurosurgery where Augmented Reality is…
Read article

GLOW800 Augmented Reality Fluorescence in AVM (Arteriovenous Malformation) treatment

In this case study Prof. Dr. Feres Chaddad talks about the treatment of AVMs. It illustrates how the Augmented Reality Fluorescence GLOW800 can help surgeons during microsurgical resection by…
Read article

Neurovascular Surgery & Augmented Reality Fluorescence

Vascular neurosurgery is highly complex. Surgeons need to be able to rely on robust anatomical information. As such, visualization technologies play an essential role. Prof. Nils Ole Schmidt is a…
Read article
Presentation from Prof. Philippe Bijlenga at the European Association of Neurosurgical Societies (EANS) 2018 Congress on the Leica Microsystems booth.

Microscopy Enhanced Navigation in Neurosurgery

Neurosurgical procedures are very complex and delicate, especially when they involve craniotomy. Surgeons need to be extremely focused and concentrated throughout. Navigation plays an essential role,…
Read article

Minimally Invasive Spine Surgery: Improving Precision and Accuracy with microscopes

Spine surgery is extremely delicate and requires extensive training and experience. Innovative visualization technologies can also help achieve better outcomes allowing to see more and have a clearer…
Read article

Neurosurgery with Heads-up Display

In the following video interviews Prof. Dr. Raphael Guzman, Vice Chairman of the Department of Neurosurgery at the University Hospital in Basel, Switzerland, talks about his experience in heads-up…
Read article

Augmented Reality and Fluorescence: Clinical Uses in Cerebrovascular and Skull Base Neurosurgery

In this webinar Dr. Bendok and Dr. Morcos explain how Augmented Reality and Fluorescence can enhance visualization and support surgical decision making. They present first-hand experience of the GLOW…
Read article

The Benefits of Fluorescein and ICG use in Vascular Neurosurgery

In this webinar Professor Marco Cenzato, head of neurosurgery in the Niguarda Hospital in Milan, Italy talks about the use of Fluorescein Sodium and Indocyanine Green (ICG) in Vascular Neurosurgery.
Read article

Surgical Microscopes: Key Factors for OR Nurses

Operating room (OR) nurses are vital to the surgery process. An OR Nurse Manager explains the key surgical microscope features to facilitate their work.
Read article
Image source: shutterstock

How to Drape an Overhead Surgical Microscope

The tutorial features the Leica ARveo digital Augmented Reality microscope for complex neurosurgery. The procedure also applies to the Leica M530 OHX, OH6, OH5 and OH4.
Read article
Image source: shutterstock

How to Drape a Surgical Microscope

Before performing surgical procedures, it is important to drape the surgical microscope to ensure sterile working conditions. At Leica, we are committed to helping you with your surgical practice. In…
Read article
Intracranial Aneurysm

Unruptured Intracranial Aneurysms

Managing unruptured intracranial aneurysms is complex and usually involves one or a combination of three options – conservative, endovascular, or surgical treatment. During surgical treatment the…
Read article

Interested to know more?

Talk to our experts. We are happy to answer all your questions and concerns.

Contact Us

Do you prefer personal consulting?