Neuroscience Research

Neuroscience often requires investigating challenging complex specimens using a microscope in order to better understand the nervous system. Leica Microsystems offers a comprehensive range of imaging solutions which enable you to overcome these challenges.

Neuroscience is a multidisciplinary field involving the study of the structure and function of the nervous system. The purpose is to understand the development of cognitive and behavioral processes as well as understand and find therapies for disorders, such as Alzheimer’s or Parkinson’s disease.

The use of microscopy techniques is critical to visualize the nervous system at cellular and subcellular levels and view any molecular changes within context. Recent developments in deep tissue imaging have provided further insights into neuronal function. Emerging technologies like genetic cell labeling and optogenetics complement these developments.

Contact Us For Personal Support

Please contact us if you would like to have personal expert advice on our microscopy solutions for Neuroscience.

Imaging challenges for neuroscience research

Research of the nervous system often requires the combination of high resolution, deep imaging and visualization of large sections. You also require flexibility to image different types of samples, such as live cells, tissues, organoids, and model organisms.

The study of fast dynamic processes, such as cell transport or synaptic remodeling, require high-speed microscopy. One of the main challenges of high-speed microscopy is acquiring high-resolution images while avoiding fluorescence saturation.

Neuroscience research often involves wide-area and volumetric imaging. The need to reduce fluorescence scattering and the background signal can make acquiring images with high contrast and resolution difficult, which is particularly critical when examining neuronal architecture in dense tissues like brain sections.

Widefield THUNDER Imager

Cultured cortical neurons. Z-stack of 59 planes (thickness: 21µm). Sample courtesy of FAN GmbH, Magdeburg, Germany.

Microscopy methods for neuroscience research

The study of the nervous system typically relies on confocal microscopy for high resolution imaging of events and structures. For deeper in vivo imaging, multiphoton microscopy is used, as its capacity to use near-infrared excitation reduces light scattering, enabling deep imaging with minimal invasiveness. Lightsheet microscopy is also preferred for light-sensitive or 3D samples. It reduces phototoxicity while providing intrinsic optical sectioning and 3D imaging.

  • Optogenetics is a technique that involves controlling neural activity using light and enables the study of specific neuronal networks and cell signaling. It requires the expression of light-sensitive proteins in the neuronal cell membrane. Exploring events at the nanoscale using optogenetics in combination with timed millisecond precision vitrification is a promising technology to study specific time points within a dynamic process.
  • Electrophysiology is the study of the electrical properties of tissues and cells and includes the study of the electrical properties of neurons. The function of nerve and muscle cells relies on ionic currents flowing through ion channels. One way to investigate ion channels is to use patch clamping. This method allows investigation of ion channels in detail and recording of the electric activity of different types of cells, mainly excitable cells like neurons.

THUNDER Imagers

THUNDER Imagers enable you to obtain a clear view of details, even deep within an intact sample, in real time without out-of-focus blur. Their ability to acquire sharp images fundamentally changes the way you work when imaging model organisms, tissue sections, and 3D cell cultures like organoids. You can use thicker sections and image larger structures than you would with a ‘standard’ widefield microscope.

STELLARIS Confocal Platform

STELLARIS gives you the power to see more. Collect more accurate data and prove your hypothesis with precision. The synergy between the new generation of Power HyD detectors, the completely optimized beam path, and the unique White Light Laser gives you perfected imaging performance. Your answers are clearer, derived from brighter signals, provide more contrast and astounding detail from even multiple low-abundance labels.

STELLARIS DIVE

The STELLARIS DIVE (Deep In Vivo Explorer) is the first multiphoton microscope with spectrally tunable detection. It provides maximum penetration depth and contrast for deep in vivo imaging. With the STELLARIS DIVE, you can tune for the deepest insight and finest detail, while imaging multiple markers with perfect color separation. Its high precision and sensitivity make it ideal for imaging live neurons.

Featured image

Neuronal cells

Nucleus (DAPI, blue), Tubulin (Cy3, green), Nestin (Cy5, red), DCX (Cy2, magenta). Acquired with the DMi8 S system

Light Microscopes

Follow us on Instagram

Related Articles

Read our latest articles about Neuroscience Research

The knowledge portal of Leica Microsystems offers scientific research and teaching material on the subjects of microscopy. The content is designed to support beginners, experienced practitioners and scientists alike in their everyday work and experiments.

More Articles

Visualization of an AVM with the Leica FL560 fluorescein fluorescence module

Benefits of Fluorescence in Vascular Neurosurgery

Fluorescein and ICG fluorescence videoangiography have transformed the experience of vascular neurosurgeons, providing an intraoperative view with enriched information. During the Leica 2021…
Microscopic images of GFP labelled vomeronasal sensory neuron axons forming glomeruli in the accessory olfactory bulb. Images acquired with a digital light sheet microscope from Leica Microsystems.

Investigating Axonal Pathfinding in the Accessory Olfactory System

Hernandez-Clavijo et. al. investigated the importance of TMEM16A, a calcium-activated chloride channel, for axonal pathfinding between the VNO and AOB and its effect on VSN density within the VNO.…
THUNDER images of chick embryo brain with labelled neuronal progenitors: left) Raw widefield data and right) after computational clearing. Courtesy T. Sanders, University of Chicago, USA.

Deciphering Signaling Pathways in Developmental Biology

This article shows how sharp, rapid imaging of neuronal progenitors in chick embryos with a THUNDER Imager Model Organism and small volume computational clearing (SVCC) could help with the study of…
Aivia_Neuroscience-VBE comparison mouse-1_traced_ROI

Accelerating Neuron Image Analysis with Automation

The ability to examine complex neural processes relies on the accurate reconstruction of neuronal networks at scale. Most data extraction methods in neuroscience research are time-consuming and…

Designing your Research Study with Multiplexed IF Imaging

Multiplexed tissue analysis is a powerful technique that allows comparisons of cell-type locations and cell-type interactions within a single fixed tissue sample. It is common for researchers to ask…

Be Confident in your Results with Cell DIVE Validated Antibodies

The Cell DIVE System includes a carefully curated list of hundreds of commercially available antibodies validated to offer optimal specificity and sensitivity in multiplexed imaging. That validation…

Overcoming Multiplexed Imaging Roadblocks

Whether a single slide or a batch of slides processed on multiple Cell DIVE imagers, every step carried out by the Cell DIVE Acquisition Software eliminates distortions and artifacts and seamlessly…

Optimal Visualization in Brain Surgery

This case study “Treatment of the Galassi type III arachnoid cyst with the M530 OHX surgical microscope from Leica Microsystems” documents the procedure step by step and shows the visualization…

Cortical Contributions to Complex Learning

This article describes the use of sharp, high contrast imaging to facilitate assessment of viral-construct placement in rat cortical brain tissue. Complex learning is often investigated through use of…
Virally labeled neurons (red) and astrocytes (green) in a cortical spheroid derived from human induced pluripotent stem cells. THUNDER Model Organism Imagerwith a 2x 0.15 NA objective at 3.4x zoomwas used to produce this 425 μm Z-stack (26 positions), which is presented here as an Extended Depth of Field(EDoF)projection.

Neuroscience Images

Neuroscience commonly uses microscopy to study the nervous system’s function and understand neurodegenerative diseases.

Interested to know more?

Talk to our experts. We are happy to answer all your questions and concerns.

Contact Us

Do you prefer personal consulting? Show local contacts

Scroll to top