Contact Us

LAS X Life Science Microscope Software Platform

One for all

Read our latest articles

Raw widefield and THUNDER image of Drosophila follicles. Image courtesy of M. Khoury and D. Bilder, University of California, Berkeley, USA.

Investigating Epithelial Morphogenesis and the Growth of Epithelia

This article shows how rapidly acquired THUNDER images of Drosophila follicles or egg chambers help distinguish apicobasal proteins when studying epithelial morphogenesis for cancer research.
Identification of distinct structures_roundworm_Ascaris_female

Find Relevant Specimen Details from Overviews

Switch from searching image by image to seeing the full overview of samples quickly and identifying the important specimen details instantly with confocal microscopy. Use that knowledge to set up…
Dynamic Signal Enhancement powered by Aivia:  Truly simultaneous multicolor imaging of live cells (U2OS) in 3D

Artificial Intelligence and Confocal Microscopy – What You Need to Know

This list of frequently asked questions provides “hands-on” answers and is a supplement to the introductory article about Dynamic Signal Enhancement powered by Aivia "How Artificial Intelligence…
Dynamic Signal Enhancement powered by Aivia: Truly simultaneous multicolor imaging of live cells (U2OS) in 3D

How Artificial Intelligence Enhances Confocal Imaging

In this article, we show how artificial intelligence (AI) can enhance your imaging experiments. Namely, how Dynamic Signal Enhancement powered by Aivia improves image quality while capturing the…

Fluorescence Lifetime-based Imaging Gallery

Confocal microscopy relies on the effective excitation of fluorescence probes and the efficient collection of photons emitted from the fluorescence process. One aspect of fluorescence is the emission…

Multicolor Image Gallery

Fluorescence multicolor microscopy, which is one aspect of multiplex imaging, allows for the observation and analysis of multiple elements within the same sample – each tagged with a different…
Zebrafish Whole Brain imaging with Leica SP8 spectral confocal laser scanning microscope

Zebrafish Brain - Whole Organ Imaging at High Resolution

Structural information is key when one seeks to understand complex biological systems, and one of the most complex biological structures is the vertebrate central nervous system. To image a complete…
Elucidate cancer development on sub-cellular level by in-vivo like tumor spheroid models.

Improve 3D Cell Biology Workflow with Light Sheet Microscopy

Understanding the sub-cellular mechanisms in carcinogenesis is of crucial importance for cancer treatment. Popular cellular models comprise cancer cells grown as monolayers. But this approach…

Fields of Application

Live Cell Imaging

Shifting perspective from single microscope components to a full working live cell imaging solution, Leica Microsystems integrates microscope, LAS X imaging software, cameras, and dedicated…

Photomanipulation

The term photomanipulation encompasses a range of techniques that utilize the properties of fluorescent molecules to initiate events and observe how dynamic complexes behave over time in living cells.…

Fluorescence

Find out how fluorescence microscopes from Leica Microsystems support your research. Fluorescence is one of the most commonly used physical phenomena in biological and analytical microscopy for its…

Organoids and 3D Cell Culture

One of the most exciting recent advancements in life science research is the development of 3D cell culture systems, such as organoids, spheroids, or organ-on-a-chip models. A 3D cell culture is an…

Advanced Microscopy Techniques

Advanced microscopy techniques: Advanced microscopy techniques encompass both high-resolution and super-resolution imaging techniques. These techniques are primarily used to visualize biological…
Background image
Scroll to top