Contact & Support
Header Image

Neuroscience

The nervous system is a tightly regulated, highly complex network. Besides gaining knowledge of the single neuronal cell, the understanding of the network as a whole is of major importance to understand how billions of neurons perform their task in the brain, how changes on molecular level are connected with pathogenesis and how neuronal networks are capable of learning and memory. With the help of microscopic techniques scientists are encountering many exciting questions, whose answers they are putting together like pieces of a puzzle.

  • Laser Microdissection Publication List

    This monthly updated reference list demonstrates the major application fields for laser microdissection in life science research.
    Read article
  • Clap On, Clap Off. Protein On, Protein Off

    Unlike genetic or pharmacological manipulation, light-controlled proteins respond immediately, can be temporally and spatially triggered, are reversible, and are specific to the protein of interest. However, designing and using light-controllable proteins often requires expertise and specialized equipment. Now, two recently published articles in Science describe generalizable methods for making photo-controllable proteins.
    Read article
  • Clarifying Tissue Clearing

    Biological specimens are intrinsically three dimensional; however because of the obscuring effects of light scatter, imaging deep into a tissue volume is problematic. Although efforts to eliminate the scatter by “clearing” the tissue have been ongoing for over a century, there have been a large number of recent innovations. This review introduces the physical basis for light-scatter in tissue, describes the mechanisms underlying various clearing techniques, and discusses several of the major advances in light microscopy for imaging cleared tissue.
    Read article
  • Quantitative Analysis of PPT1 Interactome in Human Neuroblastoma Cells

    Application example of HyVolution Super-Resolution - Mutations in the CLN1 gene that encodes Palmitoyl protein thioesterase 1 (PPT1) or CLN1, cause Infantile NCL (INCL, MIM#256730). PPT1 removes long fatty acid chains such as palmitate from modified cysteine residues of proteins. The data shown here result from isolated protein complexes from PPT1-expressing SH-SY5Y stable cells that were subjected to single step affinity purification coupled to mass spectrometry (AP-MS). Prior to the MS analysis, we utilised a modified filter-aided sample preparation (FASP) protocol. Based on label free quantitative analysis of the data by SAINT, 23 PPT1 interacting partners (IP) were identified.
    Read article
  • Multiphoton Microscopy Publication List

    Multiphoton Microscopy is an advanced technique for imaging thick samples. Applications range from the visualization of the complex architecture of the whole brain to the study of tumor development and metastasis or the responses of the immune system in living animals. On this regularly updated reference list you can find selected publications on reseach using multiphoton microscopy.
    Read article
  • Botulinum Neurotoxin Type-A Enters a Non-Recycling Pool of Synaptic Vesicles

    Neuronal communication relies on synaptic vesicles undergoing regulated exocytosis and recycling for multiple rounds of fusion. Whether all synaptic vesicles have identical protein content has been challenged, suggesting that their recycling ability may differ greatly. Botulinum neurotoxin type-A (BoNT/A) is a highly potent neurotoxin that is internalized in synaptic vesicles at motor nerve terminals and induces flaccid paralysis. Recently, BoNT/A was also shown to undergo retrograde transport, suggesting it might enter a specific pool of synaptic vesicles with a retrograde trafficking fate. Using high-resolution microscopy techniques including electron microscopy and single molecule imaging, we found that the BoNT/A binding domain is internalized within a subset of vesicles that only partially co-localize with cholera toxin B-subunit and have markedly reduced VAMP2 immunoreactivity.
    Read article
  • Clearing of Fixed Tissue: A Review from a Microscopist’s Perspective

    Chemical clearing of fixed tissues is becoming a key instrument for the three-dimensional reconstruction of macroscopic tissue portions, including entire organs. Indeed, the growing interest in this field has both triggered and been stimulated by recent advances in high-throughput microscopy and data analysis methods, which allowed imaging and management of large samples.
    Read article
  • Symmetric Synapse - Clathrin Coated Endocytosis Pit in the Postsynaptic Dendrite

    Application Note for Leica EM ICE - WT hippocampal neurons were plated at a density of 80,000 cells/cm2 on 6 mm sapphire disks for 14 days. Sample were frozen using a high-pressure freezer (Leica EM ICE) under a pressure of 2100bar by mounting it into a sandwich support with extracellular solution containing 15% of Ficoll 400, to assess ice crystal damage. The Cryo-fixation was achieved within milliseconds allowing simultaneous immobilization of all macromolecular components. After freezing, sam­ple was transferred into cryovials containing 1% glutaraldehyde, 1% osmium tetroxide, 1% milliQwater in anhydrous acetone and processed in an automated freeze-substitution device (Leica EM AFS2).
    Read article
  • Webinar: Advances in Neuroscience: New Methods for Correlating Structure and Function

    During this webcast, we will present recent advances in targeted cell labelling, tissue clearing, and fluorescence imaging methods for the study of brain function. These exciting methods are helping to accelerate the understanding of how individual cells and complex neural circuits interact both structurally and functionally.
    Read article
  • Super-Resolution Mapping of Neuronal Circuitry With an Index-Optimized Clearing Agent

    Super-resolution imaging deep inside tissues has been challenging, as it is extremely sensitive to light scattering and spherical aberrations. Here, we report an optimized optical clearing agent for high-resolution fluorescence imaging (SeeDB2). SeeDB2 matches the refractive indices of fixed tissues to that of immersion oil (1.518), thus minimizing both light scattering and spherical aberrations.
    Read article
  • Super-Resolution Microscopy of the Synaptic Active Zone

    At the presynaptic active zone (AZ) a variety of specialized proteins are assembled to complex architectures, which set the basis for speed, precision and plasticity of synaptic transmission. Recently, super-resolution microscopy (SRM) techniques have begun to enter the neurosciences. These approaches combine high spatial resolution with the molecular specificity of fluorescence microscopy. Here, we discuss how SRM techniques can be used to obtain information on the organization of AZ proteins.
    Read article
  • Workflows & Protocols: Connecting Microscopy and Molecular Biology in Neuroscience

    The main topic during this course was how to apply laser microdissection in neuroscience. Leica specialists demonstrated why laser microdissection is a suitable techniques for brain investigation as it allows to separate distinct brain layers or even to isolate individual neurons.
    Read article
  • Video Talk by Daniel Choquet: Our brain, this black box

    What happens in your brain when you learn something? When you store a memory? In this informative and fascinating talk, Daniel Choquet shares some of the most recent findings regarding those brain functions. Light makes it possible to see what is inside the powerful black box that is the brain, and opens new paths for fighting brain dysfunctions.
    Read article
  • Switching Roles: The Functional Plasticity of Adult Tissue Stem Cells

    Adult organisms have to adapt to survive, and the same is true for their tissues. Rates and types of cell production must be rapidly and reversibly adjusted to meet tissue demands in response to both local and systemic challenges. Recent work reveals how stem cell (SC) populations meet these requirements by switching between functional states tuned to homoeostasis or regeneration.
    Read article
  • Super-resolution Imaging of the Natural Killer Cell Immunological Synapse on a Glass-supported Planar Lipid Bilayer

    The glass-supported planar lipid bilayer system has been utilized in a variety of disciplines. One of the most useful applications of this technique has been in the study of immunological synapse formation, due to the ability of the glass-supported planar lipid bilayers to mimic the surface of a target cell while forming a horizontal interface.
    Read article
  • Axon Injury and Regeneration in the Adult Drosophila

    Neural regeneration is a fascinating process with profound impact on human health, such that defining biological and genetic pathways is of interest. Here we describe an in vivo preparation for neuronal regeneration in the adult Drosophila. The nerve along the anterior margin of the wing is comprised of ~225 neurons that send projections into the central neuropil (thorax).
    Read article
  • Identification of Molecular Pathways Facilitating Glioma Cell Invasion In Situ

    Gliomas are mostly incurable secondary to their diffuse infiltrative nature. Thus, specific therapeutic targeting of invasive glioma cells is an attractive concept. As cells exit the tumor mass and infiltrate brain parenchyma, they closely interact with a changing micro-environmental landscape that sustains tumor cell invasion.
    Read article
  • JC Virus Inclusions in Progressive Multifocal Leukoencephalopathy: Scaffolding Promyelocytic Leukemia Nuclear Bodies Grow With Cell Cycle Transition Through an S-to-G2–Like State in Enlarging Oligodendrocyte Nuclei

    In progressive multifocal leukoencephalopathy, JC virus–infected oligodendroglia display 2 distinct patterns of intranuclear viral inclusions: full inclusions in which progeny virions are present throughout enlarged nuclei and dot-shaped inclusions in which virions are clustered in subnuclear domains termed “promyelocytic leukemia nuclear bodies” (PML-NBs). Promyelocytic leukemia nuclear bodies may serve a scaffolding role in viral progeny production.
    Read article
  • How to Choose the Right Confocal Microscope for Your Lab?

    Confocal microscopy has come a very long way since its invention more than a half-century ago. Today, with novel technology driven by leading imaging companies, it has become the standard for fluorescence microscopy. Choosing the right confocal microscope for your specific research requires the appropriate mix of features related to resolution, sensitivity, and speed.
    Read article
  • Video Talk by Karl Deisseroth: Optogenetics

    Optogenetics is a combination of genetics and optics to achieve a gain or loss of function of biochemical events such as action potentials in a particular neuron or tissue. Opsin genes encode proteins that receive light and give rise to ion flow. This talk gives an introduction to optogenetics followed by examples of how optogenetics is being used to study the brain.
    Read article
  • A New Probe for Super-Resolution Imaging of Membranes Elucidates Trafficking Pathways

    The molecular composition of the organelles involved in membrane recycling is difficult to establish as a result of the absence of suitable labeling tools. We introduce in this paper a novel probe, named membrane-binding fluorophore-cysteine-lysine-palmitoyl group (mCLING), which labels the plasma membrane and is taken up during endocytosis.
    Read article
  • Webinar: Laser Microdissection – Dissection Perfection

    The two talks of this webinar are focussed on the practical advantages of this technique for a precise and contamination-free isolation and selection of single cells from brain sections for RNA downstream analysis and afterwards on cloning live cells from cultures for further cultivation and analysis. Laser microdissection is a microscope-controlled manipulation technique for the precise separation of samples using a guided focused laser beam.
    Read article
  • Clearing Procedures for Deep Tissue Imaging

    Multi-channel multiphoton microscopy with dedicated optics for CLARITY. Why clearing? Curiosity is human nature. And nothing attracts as much curiosity as the inside of living organisms. While in ancient times those who cut human bodies open to do research were put to death, and modern anatomy started only after Pope Clement VII allowed dissection, we can now watch brains working in living animals – and have a good chance of soon being able to interfere with the observed activities for healing (or control) purposes.
    Read article
  • Webinar: Exploring Neurons and Synapses: Imaging Tools and Techniques

    In the coming years, considerable effort and resources will be directed at understanding the neural connections of the brain. During this webinar, we will examine many of the tools being used to study how neurons interact with one another at their synapses.
    Read article
  • Correlated Optical and Isotopic Nanoscopy

    The isotopic composition of different materials can be imaged by secondary ion mass spectrometry. In biology, this method is mainly used to study cellular metabolism and turnover, by pulsing the cells with marker molecules such as amino acids labelled with stable isotopes (15N, 13C). The incorporation of the markers is then imaged with a lateral resolution that can surpass 100 nm.
    Read article
  • Single-Cell Phenotyping within Transparent Intact Tissue through Whole-Body Clearing

    Understanding the structure-function relationships at cellular, circuit, and organ-wide scale requires 3D anatomical and phenotypical maps, currently unavailable for many organs across species. At the root of this knowledge gap is the absence of a method that enables whole-organ imaging. Herein, we present techniques for tissue clearing in which whole organs and bodies are rendered macromolecule-permeable and optically transparent, thereby exposing their cellular structure with intact connectivity.
    Read article
  • STED Microscopy of Living Cells – New Frontiers in Membrane and Neurobiology

    Recent developments in fluorescence far-field microscopy such as STED microscopy have accomplished observation of the living cell with a spatial resolution far below the diffraction limit. Here, we briefly review the current approaches to super-resolution optical microscopy and present the implementation of STED microscopy for novel insights into live cell mechanisms, with a focus on neurobiology and plasma membrane dynamics.
    Read article
  • Video: The Ascent – a Brief History of the Brain

    This video features a few of the major scientists and findings that have contributed to modern neuroscience: The history of our knowledge of the brain, how technical and conceptual advances led to new insights and the human side of neuroscience through quotations from key individuals on the nature of the brain and consciousness.
    Read article
  • Webinar: Advances in Neurotechniques – Methods that Reveal the Structure and Function of the Brain

    In this webinar Karl Deisseroth and Viviana Gradinaru will explain the most recent neurotechniques and how these are being used to advance our knowledge of the brain.
    Read article
  • Super-Resolution Microscopy Helped to Create the First 3D Model of a Synapse

    A research team from Göttingen, led by Prof. Silvio O. Rizzoli, managed to determine the copy numbers and positions of all important building blocks of a synapse for the first time. This allowed them to reconstruct the first scientifically accurate 3D model of a synapse.
    Read article

Useful Links

Communities and Web Sources

www.researchgate.net/
Social network for scientists

http://www.ibiology.org/
Teaching tools, video lectures on biology and microscopy

bitesizebio.com
Online magazine and community for molecular and cell biology researchers

www.somersault1824.com
Resource for high-end scientific illustrations, images and animations

Search Engines and Data Bases

www.cellimagelibrary.org
Public resource database of images, videos, and animations of cells

harvester.fzk.de/harvester
Bioinformatic meta search engine for genes and proteins

www.gopubmed.com
Search interface for pubmed

en.wikipedia.org/wiki/List_of_academic_databases_and_search_engines
List of academic databases and search engines

scholar.google.com
Beta of Google's search engine for scientific article abstracts

Journals

www.jneurosci.org/
The Journal of Neuroscience

www.journals.elsevier.com/neuroscience/
Neuroscience

www.journals.elsevier.com/neuroscience-letters/
Neuroscience Letters

www.wiley.com/bw/journal.asp?ref=0953-816X&site=1
Europaen Journal of Neuroscience

www.doaj.org/
Directory of open access journals

emboj.embopress.org/
The EMBO Journal

www.lifescied.org
CBE-Life Sciences Education – an ASCB online journal

www.sciencemag.org/
Science

www.nature.com/
Nature

www.cell.com/
Biweekly publication of exceptional research articles

jcs.biologists.org/
Journal of Cell Science

dev.biologists.org/
Development

jeb.biologists.org/
The Journal of Experimental Biology

dmm.biologists.org/
DMM Disease Models & Mechanisms

www.biotechniques.com/
International Journal of Life Science Methods

www.plosone.org/home.action
International, peer-reviewed, open-access, online publication

www.microscopy-analysis.com/
International Journal for microscopists

Organizations

www.sfn.org/
Society for Neuroscience

nwg.glia.mdc-berlin.de/en/
German Neuroscience Society

www.ascb.org/
ASCB American Society of Cell Biology

www.biologists.com/cob_activities.html
the company of biologists

Your bookmarks are missing?
Please send us your useful links!