Upright Light Microscopes

Upright microscopes for life science research

Get the publication-quality imaging and customizable upright microscope solution you need for your Life Science research with Leica Microsystems. These powerful imaging systems feature constant color, natural light illumination, superior optics, and configurable options to provide high contrast, brilliant images for your cutting-edge biological research.

Upright microscopes for industrial and materials

Get insights into the smallest details and inspect and document results efficiently with industrial and materials upright microscopes from Leica Microsystems. Each solution can be customized with brilliant, cool LED illumination, ergonomic accessories, sophisticated digital cameras and intuitive software to meet a broad range of applications.

Need Assistance?

Contact a local imaging specialist for expert advice on the right upright microscope for your needs and budget.

Leica DM4B 6B Upright Microscopes

DM4 B & DM6 B Upright Microscopes

Rapid results, customized workflows, and deep insights. Optimized for imaging tissue and plant specimens, as well as pathology, these microscopes are designed to accelerate and tailor your workflows.

DM4 B & DM6 B

Follow us on Instagram

related articles

Read our latest articles about Upright Microscopes

The knowledge portal of Leica Microsystems offers scientific research and teaching material on the subjects of microscopy. The content is designed to support beginners, experienced practitioners and scientists alike in their everyday work and experiments.

More Articles

Single cells collected via laser microdissection as part of the Deep Visual Proteomics workflow.

AI meets Deep Visual Proteomics (DVP) to Advance Disease Research

In this webinar, Dr. Andreas Mund introduces Deep Visual Proteomics (DVP) – a cutting-edge platform that integrates AI-powered tissue modeling with spatially resolved, untargeted proteomics. He…
U2OS cells transfected with an Mx1-GFP plasmid (signal enhanced using Alexa Fluor 488-conjugared anti-GFP antibody) and co-stained for nuclear DNA (Hoechst 33342), microtubules (Alexa 555) and F-actin (ATTO 643). Image was captured on Mateo FL.

Microscopy and AI Solutions for 2D Cell Culture

This eBook explores the integration of microscopy and AI technologies in 2D cell culture workflows. It highlights how traditional imaging methods—such as brightfield, phase contrast, and…
Cell DIVE multiplexed image of FFPE tissue section from human invasive ductal carcinoma (IDC)

AI-Powered Hi-Plex Spatial Analysis Tools for Breast Cancer Research

Breast cancer (BC) is the leading cause of cancer-related deaths in women. Investigating the tumor microenvironment (TME) is crucial to elucidate the mechanisms of tumor progression. Systematic…
67-hour, multi-position time-lapse of mouse intestinal organoids expressing the cell cycle reporter FUCCI2 (hGem-mVenus and hCdt1-mCherry).

Focus on Long-Term Imaging in 3D with Light Sheet Microscopy

Long-term 3D imaging reveals how complex multicellular systems grow and develop and how cells move and interact over time, unlocking critical insights into development, disease, and regeneration.…
Aneurysm shown with GLOW800 AR fluorescence application. Image courtesy of Prof. Jacques Guyotat, Hôpital Neurologique Pierre Wertheimer, Lyon

How AR Fluorescence Imaging Supports Neurovascular Surgery

In this article, we explain how fluorescence imaging works in vascular neurosurgery and explain the benefits of the GLOW800 Augmented Reality fluorescence application.
TEM micrographs of polymer sections. Left: Poly(styrene)-b-poly(isoprene). Right: Poly(styrene)-b-poly(methyl methacrylate).

Ultramicrotome Sectioning of Polymers for TEM Analysis

We demonstrate the capabilities of the UC Enuity ultramicrotome from Leica Microsystems for preparing ultrathin sections of polymer samples under both ambient and cryogenic conditions. By presenting…
Radially grown sugar crystals which have been imaged with a Leica microscope using circular polarized light.

Polarizing Microscope Image Gallery

How polarization microscope images can be used for analysis is shown in this gallery. Polarized light microscopy (also known as polarizing microscopy) is an important method for different fields and…
Artificial Intelligence (AI) segmentation used in conjunction with LMD to increase discovery throughput.

Biomarker Discovery with Laser Microdissection

Explore the potential of spatial proteomics workflows, such as Deep Visual Proteomics (DVP), to decipher pathology mechanisms and uncover druggable targets. Altered protein expression, abundance, or…
Brain organoid labeled with lamin (green) and tubulin (magenta), acquired using Viventis Deep. Courtesy of Akanksha Jain, Treutlein Lab ETH-DBSSE Basel (Switzerland).

Faster & Deeper Insights into Organoid and Spheroid Models

Gain deeper, more translatable, insights into organoid and spheroid models for drug discovery and disease research by overcoming key imaging challenges. In this eBook, explore advanced microscopy…
Final Segmentation of organelles in Trichomonas species. Magenta – costa, light blue – hydrogenosomes, turquoise – ER, red – vacuoles, yellow – axostyle, green – Golgi apparatus.  Sample courtesy of Isabelle Guerin-Bonne, Low Kay En, Electron Microscopy Unit, Yong Loo Lin School of Medicine, National University of Singapore. Scale bar: 1 µm.

Volume EM and AI Image Analysis

The article outlines a detailed workflow for studying biological tissues in three dimensions using volume-scanning electron microscopy (volume-SEM) combined with AI-assisted image analysis. The focus…

Materials Science and Inspection

Excellent sample preparation and imaging methods are key for inspecting materials and visualizing the fine details with reliability and accuracy. Inverted microscopes enable you to achieve this goal in a more efficient way compared to upright microscopes. They offer you high-quality optics and intelligent automation for optimal workflows. 

Read More

Life Science Research

Inverted microscopes are often used in life science research for the visualization, measurement, analysis, and documentation of live cell and tissue cultures. Continuous innovative technical advances for inverted microscopes support the ever-changing imaging needs of life science researchers. 

Read More

Scroll to top