THUNDER Imager Live Cell & 3D Cell Culture & 3D Assay THUNDER Imaging Systeme Produkte Startseite Leica Leica Microsystems
  • Pharmazeutisch-chemische Forschung

    Ihre Anwendungen in der pharmazeutischen und chemischen Produktion, Forschung und Entwicklung erfordern Mikroskop-, Kamera- und Softwarelösungen, die Ihnen dabei helfen, Ihre Ergebnisse klar und…
    Read article
  • [Translate to german:]

    Bildgebung lebender Zellen

    Leica Microsystems verschiebt den Fokus von einzelnen Mikroskopkomponenten zu einer vollständigen Live-Cell-Bildgebungslösung und kombiniert Mikroskop, Bildgebungssoftware LAS X, Kameras und…
    Read article
  • [Translate to german:]

    Fluoreszenz

    Die Fluoreszenz ist eines der am häufigsten verwendeten physikalischen Phänomene in der biologischen und analytischen Mikroskopie, vor allem wegen ihrer hohen Empfindlichkeit und Spezifität. Erfahren…
    Read article
  • [Translate to german:]

    Zebrafisch-Forschung

    Für optimale Ergebnisse während der Bewertung, Sortierung, Manipulation und Bildgebung von Modellorganismen ist es entscheidend feine Details und Strukturen genauestens zu erkennen. Das bildet die…
    Read article
  • Leica Fotomanipulation

    Photomanipulation

    Der Begriff Photomanipulation bezeichnet eine Reihe von Techniken, bei denen man sich die Eigenschaften fluoreszenter Moleküle zur Auslösung von Ereignissen und Beobachtung des Verhaltens dynamischer…
    Read article
  • Neurowissenschaften

    Arbeiten Sie an einem besseren Verständnis neurodegenerativer Erkrankungen oder an einer Untersuchung der Funktionen des Nervensystems? Erfahren Sie, wie Sie mit Bildgebungslösungen von Leica…
    Read article
  • Organoide und 3D-Zellkultur

    Eine der aufregendsten Fortschritte in der Life-Science-Forschung in jüngster Zeit ist die Entwicklung von 3D-Zellkultursystemen wie Organoiden, Sphäroiden oder Organ-on-a-Chip-Modellen. Eine…
    Read article
  • Virologie

    Liegt Ihr Forschungsschwerpunkt auf Virusinfektionen und -krankheiten? Erfahren Sie, wie Sie mit Lösungen für Bildgebung und Probenvorbereitung von Leica Microsystems mehr Erkenntnisse in der…
    Read article
  • Science Lab Topic: THUNDER Imaging

    Role of Mucins and Glycosylation in Dry Eye Disease

    This article shows how fast, high-contrast, and sharp imaging of stratified human corneal epithelial cells with THUNDER imaging technology for dry eye disease (DED) research allows membrane ridges to…
    Read article
  • Images of C2C12 cells
    Science Lab Topic: THUNDER Imaging

    Skeletal Muscle Adaptation and Fibrotic Diseases

    The mechanisms of how skeletal muscle adapts to fibrotic pathologies can be investigated more efficiently with fast, high-contrast imaging of C2C12 mouse myoblast cells which is described in this…
    Read article
  • HeLa Kyoto cells
    Science Lab Topic: CLEM

    How to Improve Live Cell Imaging with Leica Nano Workflow

    For live-cell CLEM applications, light microscopy imaging is a critical step for identifying the right cell in the right state at the right time. In this article, Leica experts share their insights on…
    Read article
  • Science Lab Topic: THUNDER Imaging

    Optimizing THUNDER Platform for High-Content Slide Scanning

    With rising demand for full-tissue imaging and the need for FL signal quantitation in diverse biological specimens, the limits on HC imaging technology are tested, while user trainability and…
    Read article
  • Section of mouse lung
    Science Lab Topic: THUNDER Imaging

    Monitoring Immunosuppressive Mechanisms from Infection

    This application note discusses the importance of fast, sensitive, and haze-free imaging for the monitoring of immunosuppression in mouse lung epithelial tissue infected with the Puerto Rico 8…
    Read article
  • Images of a brain organoid derived from iPSCs acquired with a THUNDER Imager 3D Cell Culture.
    Science Lab Topic: THUNDER Imaging

    “Brains-In-A-Dish” from Induced Pluripotent Stem Cells (iPSCs)

    This article discusses the benefits of using the THUNDER technology for imaging inside 3D human cortical brain organoids. These organoids are derived from human induced pluripotent stem cells (iPSCs)…
    Read article
  • Spheroid shown here as a maximum projection of the raw widefield image data (left) and THUNDER image after Instant Computational Clearing (right).
    Science Lab Topic: THUNDER Imaging

    Developing Heart Pacemaker Cells from Cardiac Spheroids

    During the last decade, 3D cell culture has been established as a more realistic model compared to classical 2D culture systems. Cells can develop into miniature 3D objects, so called spheroids, which…
    Read article
  • Science Lab Topic: EM Sample Preparation

    Putting Dynamic Live Cell Data into the Ultrastructural Context

    With the Leica Nano Workflow, searching for a needle in the haystack is a thing of the past. Take advantage of correlative light and electron microscopy to identify directly the right cell at the…
    Read article
  • Electroporated nerve cells (green), specific neuronal markers (magenta) and cell nuclei (white), computational cleared.
    Science Lab Topic: THUNDER Imaging

    Into the Third Dimension with "Wow Effect"- Observe Cells in 3D and Real-Time

    Life is fast, especially for a cell. As a rule, cells should be examined under physiological conditions which are as close as possible to their natural environment. New technologies offer tremendous…
    Read article
  • Lung organoid taken at the "liquid-air interface" with a THUNDER Imager 3D Cell Culture
    Science Lab Topic: THUNDER Imaging

    Observing 3D Cell Cultures During Development

    3D cell cultures, such as organoids and spheroids, give insights into cells and their interactions with their microenvironment. These 3D cell cultures are playing an increasingly important role for…
    Read article
  • Cytosolic Ca2+ measurement using ratiometric Fura 2 dye
    Science Lab Topic: THUNDER Imaging

    Cytosolic Calcium Ions in Melanoma Cancer Cells

    In this article, a ratiometric fluorometric method for cytosolic calcium ion (Ca2+) measurement in cultured melanoma cells using Fura 2-AM cell loading and fluorescence microscopy imaging is presented…
    Read article
  • Virally labeled neurons (red) and astrocytes (green) in a cortical spheroid derived from human induced pluripotent stem cells.
    Science Lab Topic: Widefield Microscopy

    Download The Guide to Live Cell Imaging

    In life science research, live cell imaging is an indispensable tool to visualize cells in a state as in vivo as possible. This E-book reviews a wide range of important considerations to take to…
    Read article
  • Science Lab Topic: THUNDER Imaging

    Studying Cell Division

    Cell division is a biological process during which all cellular components must be distributed among the daughter cells. The division process requires firm coordination for success. Microscopy is…
    Read article
  • Influenza (red) infected primary porcine lung epithelial grown in a multilayer of about 60 µm
    Science Lab Topic: THUNDER Imaging

    Viral Infections – Studying Influenza-host Interactions in 3D Specimens

    Stefan Finke studies virus-host interactions. It turns out that the ways the virus and host interact are different when comparing results from classical laboratory monolayer cell lines and “close to…
    Read article
  • Scaffold composed of fluorescent fibers
    Science Lab Topic: THUNDER Imaging

    Finding new Scaffolds for Tissue Engineering

    Tissue engineers use biomaterials for a variety of applications from drug delivery to supporting the regeneration of damaged or lost tissues to creating in vitro disease models. Scaffold architecture…
    Read article
  • Science Lab Topic: THUNDER Imaging

    The Power of Pairing Adaptive Deconvolution with Computational Clearing

    Deconvolution is a computational method used to restore the image of the object that is corrupted by the point spread function (PSF) along with sources of noise. In this technical brief, learn how the…
    Read article
  • Science Lab Topic: THUNDER Imaging

    Improvement of Imaging Techniques to Understand Organelle Membrane Cell Dynamics

    Understanding cell functions in normal and tumorous tissue is a key factor in advancing research of potential treatment strategies and understanding why some treatments might fail. Single-cell…
    Read article
  • Science Lab Topic: Fluorescence Microscopy

    Studying Autoimmune Disease

    This article discusses how autoimmune diseases, like systemic lupus erythematosus (SLE), can be studied more efficiently using thick, 3D kidney tissue specimens visualized with a THUNDER Imager . SLE…
    Read article
  • Science Lab Topic: THUNDER Imaging

    From Organs to Tissues to Cells: Analyzing 3D Specimens with Widefield Microscopy

    Obtaining high-quality data and images from thick 3D samples is challenging using traditional widefield microscopy because of the contribution of out-of-focus light. In this webinar, Falco Krüger…
    Read article
  • Science Lab Topic: THUNDER Imaging

    Studying Human Brain Development and Disease

    Neural spheroids created from human induced pluripotent stem cells (iPSCs) provide effective and novel tools for studying brain development, as well as the underlying pathological mechanisms of…
    Read article
  • Science Lab Topic: THUNDER Imaging

    An Introduction to Computational Clearing

    Many software packages include background subtraction algorithms to enhance the contrast of features in the image by reducing background noise. The most common methods used to remove background noise…
    Read article
  • Science Lab Topic: Basics in Microscopy

    Factors to Consider When Selecting a Research Microscope

    An optical microscope is often one of the central devices in a life-science research lab. It can be used for various applications which shed light on many scientific questions. Thereby the…
    Read article
  • Image courtesy of Dr. Stefan Finke, Friedrich-Loeffler- Institute, Riems, Germany.
    Science Lab Topic: THUNDER Imaging

    How Can Immunofluorescence Aid Virology Research?

    Modern virology research has become as crucial now as ever before due to the global COVID-19 pandemic. There are many powerful technologies and assays that virologists can apply to their research into…
    Read article
  • iPSC cells
    Science Lab Topic: THUNDER Imaging

    Studying Natural Killer (NK) Cells Derived from Induced Pluripotent Stem Cells (iPSC)

    The study of natural killer (NK) cells holds tremendous promise for developing novel immunotherapies. NK cells derived from induced pluripotent stem cells (iPSCs) can be used to create an easily…
    Read article
  • Science Lab Topic: Basics in Microscopy

    Getting Sharper 3D Images of Thick Biological Specimens with Widefield Microscopy

    Widefield fluorescence microscopy is often used to visualize structures in life science specimens and obtain useful information. With the use of fluorescent proteins or dyes, discrete specimen…
    Read article
  • Science Lab Topic: THUNDER Imaging

    IL-18 cytokine derived from the enteric nervous system is important for intestinal immunity

    Interleukin 18 (IL-18) is a proinflammatory cytokine, which induces cell-mediated immune reaction upon bacterial infection. In the intestine, it is known that IL-18 is produced in immune and…
    Read article
  • Science Lab Topic: THUNDER Imaging

    Cholesterol Homeostasis Modulates Platinum Sensitivity in Human Ovarian Cancer

    Ovarian cancer is one of the most severe types of cancers that women can suffer from during their lifetimes. It is the cancer’s tendency for frequent relapses and drug resistance that leads to…
    Read article
  • Science Lab Topic: THUNDER Imaging

    Computational Clearing - Enhance 3D Specimen Imaging

    This webinar is designed to clarify crucial specifications that contribute to THUNDER Imagers' transformative visualization of 3D samples and improvements within a researcher's imaging-related…
    Read article
  • Science Lab Topic: THUNDER Imaging

    THUNDER Imagers: High Performance, Versatility and Ease-of-Use for your Everyday Imaging Workflows

    This webinar will showcase the versatility and performance of THUNDER Imagers in many different life science applications: from counting nuclei in retina sections and RNA molecules in cancer tissue…
    Read article
  • Science Lab Topic: THUNDER Imaging

    Evaluating Axon Regeneration After Brain or Spine Trauma of Mice

    Damaged nerve regeneration was investigated using mouse spinal cord sections treated with compounds that counter axon growth inhibitor (AGI) proteins. The sections were screened to find active and…
    Read article
  • Science Lab Topic: THUNDER Imaging

    Interview with Magali Mondin on THUNDER Imagers

    Magali Mondin, an engineer at the BIC (Bordeaux Imaging Center) in France, describes her experience using a THUNDER Imager in this interview. She had the opportunity to test extensively the THUNDER…
    Read article
  • Science Lab Topic: THUNDER Imaging

    Drosophila Testis Niche Stem Cells – Three Color Computational Clearing

    Differentiated living beings such as humans, but also a fruit fly or a plant, possess not only the differentiated cells which form specific tissues, but also those cells whose fate is not yet (or only…
    Read article
  • Science Lab Topic: THUNDER Imaging

    Alzheimer Plaques: fast Visualization in Thick Sections

    More than 60% of all diagnosed cases of dementia are attributed to Alzheimer’s disease. Typical of this disease are histological alterations in the brain tissue. So far, there is no cure for this…
    Read article
  • Science Lab Topic: THUNDER Imaging

    THUNDER Technology Note

    So far, widefield microscopy was not suitable to image larger volumes, since the contrast of the recorded fluorescence image is reduced by the background (BG) mainly originating from out of focus…
    Read article