Confocal Microscopes Articles

Elucidate cancer development on sub-cellular level by in-vivo like tumor spheroid models.

Improve 3D Cell Biology Workflow with Light Sheet Microscopy

Understanding the sub-cellular mechanisms in carcinogenesis is of crucial importance for cancer treatment. Popular cellular models comprise cancer cells grown as monolayers. But this approach…

Resolved Field Number (RFN)

The field number (FN) for optical microscopes indicates the field of view (FOV). It corresponds to the area in the intermediate image that is observable through the eyepieces. Although, we cannot…

What is a Field-of-View Scanner?

A field-of-view scanner is an assembly of galvanometric scanning mirrors used in single-point confocal microscopes that offer the correct optical recording of large field sizes. The field-of-view…

What is a Tandem Scanner?

A Tandem Scanner is an assembly of two different types of scanning together in one system for true confocal point scanning. The Tandem Scanner consists of a three-mirror scanning base with the…

Which Sensor is the Best for Confocal Imaging?

The Hybrid Photodetectors (HyD) are! Why that is the case is explained in this short Science Lab article.

Primary Beam Splitting Devices for Confocal Microscopes

Current fluorescence microscopy employs incident illumination which requires separation of illumination and emission light. The classical device performing this separation is a color-dependent beam…
Pinhole diameter and diffraction pattern.

Pinhole Effect in Confocal Microscopes

When operating a confocal microscope, or when discussing features and parameters of such a device, we inescapably mention the pinhole and its diameter. This short introductory document is meant to…
C. elegans

Studying Caenorhabditis elegans (C. elegans)

Find out how you can image and study C. elegans roundworm model organisms efficiently with a microscope for developmental biology applications from this article.
© wowomnom – Fotolia.com

From Light to Mind: Sensors and Measuring Techniques in Confocal Microscopy

This article outlines the most important sensors used in confocal microscopy. By confocal microscopy, we mean "True Confocal Scanning", i.e. the technique that illuminates and measures one single…
Schematic graph of the light path in a Spalt-Ultramikroskop.

Confocal and Light Sheet Imaging

Optical imaging instrumentation can magnify tiny objects, zoom in on distant stars and reveal details that are invisible to the naked eye. But it notoriously suffers from an annoying problem: the…
Acousto-optics, sketch

Acousto Optics in True Confocal Spectral Microscope Systems

Acousto-optical elements have successfully replaced planar filters in many positions. The white confocal, regarded as the fully spectrally tunable confocal microscope, was not possible without this…

Nobel Prize 2013 in Physiology or Medicine for Discoveries of the Machinery Regulating Vesicle Traffic

On October 7th 2013, The Nobel Assembly at Karolinska Institutet has decided to award The Nobel Prize in Physiology or Medicine 2012 jointly to James E. Rothman, Randy W. Schekman and Thomas C. Südhof…

Handbook of Optical Filters for Fluorescence Microscopy

Fluorescence microscopy and other light-based applications require optical filters that have demanding spectral and physical characteristics. Often, these characteristics are application-specific and…

Spectral Detection – How to Define the Spectral Bands that Collect Probe-specific Emission

To specifically collect emission from multiple probes, the light is first separated spatially and then passes through a device that defines a spectral band. Classically, this is a common glass-based…
John B. Gurdon

Nobel Prize 2012 in Physiology or Medicine for Stem Cell Research

The Nobel Prize recognizes two scientists who discovered that mature, specialised cells can be reprogrammed to become immature cells capable of developing into all tissues of the body. Their findings…
Sub-Femtolitre volume_Fluorescence correlation spectroscopy (FCS)

Fluorescence Correlation Spectroscopy (FCS)

Fluorescence correlation spectroscopy ( FCS ) measures fluctuations of fluorescence intensity in a sub-femtolitre volume to detect such parameters as the diffusion time, number of molecules or dark…
Live cell imaging, 4 colors: Mitochondria (MitoView Green, yellow) and actin (mNeonGreen, cyan) microtubuli (SIR-tubulin, magenta), endosomes (NIR750, green). Processed with DSE and DSE powered by Aivia.

The Principles of White Light Laser Confocal Microscopy

The perfect light source for confocal microscopes in biomedical applications has sufficient intensity, tunable color and is pulsed for use in lifetime fluorescence. Furthermore, it should offer means…

Fluorescence Recovery after Photobleaching (FRAP) and its Offspring

FRAP (Fluorescence recovery after photobleaching) can be used to study cellular protein dynamics: For visualization the protein of interest is fused to a fluorescent protein or a fluorescent dye. A…
Scroll to top