Zebrafish Research

Taking substantiated decisions in Zebrafish research. For the best result during screening, sorting, manipulation, and imaging you need to see details and structures to make the right decisions for your next steps in research. Known for outstanding optics and superb resolution, stereo microscopes and transmitted light bases from Leica are the preferred choice of researchers worldwide.

It’s all about high resolution, high color fidelity and optimized contrasting leading to insightful decisions.

Simply get in touch!

Please contact us for a demo request or personal expert advice on our microscopy solutions for zebrafish research.

The basis for correct decisions in Screening & Sorting

Do you struggle to see finest pigments and structural differences in your zebrafish? The identification of the right phenotype is crucial and can be demanding.

See more details at first glance – Leica zebrafish screening solutions allow you to recognize finest structures and more colors even at low magnification. This means clear understanding of the nervous system, heart, blood vessels, and pigmentation.

Improve your work experience by

  • Easy selection of the perfect contrast
  • Homogenous contrast over the entire FOV
  • Steady contrast without readjusting over the entire zoom range

Make a difference in your screening & sorting with the Leica C.Elegans screening solution: M165 C and TL3000 Ergo.

Fascinating information with different contrast options

Get the full color spectrum of your staining with the specially designed LEDs in the Leica TL bases.

  • Evaluate staining and see realistic colors of your specimen in bright field
  • Investigate internal structures with Rottermann Contrast
  • Explore the smallest details with dark field illumination

Fluorescence Screening: Don’t let background noise mask your signals

Detecting xFP fusion proteins can be very challenging. You try to keep the expression physiologically low for realistic protein levels. Signals are therefore faint and hard to identify.

In this situation your microscope solution should not be working against you with high levels of autofluorescence, e.g. from lens glue, glass, and the LED of your microscope base.

We solve these problems with

  • A separate excitation channel in our fluorescence stereo microscopes, known as Triple Beam
  • A specially designed mirror in our screening bases that doesn’t let autofluorescence come back
  • Adjustable flaps covering the LED in the automated base to block autofluorescence during imaging

This results in a clear and strong fluorescence signal against a noise-free, black background.

Manipulate your specimen with ease

Leica stereo microscopes allow easy orientation in 3D. This ensures that you see exactly where your tools are, so you don’t accidently injure your model organism. 

Our zebrafish solutions enable you to

  • Manipulate easily with a natural hand-eye-coordination 
  • Set injections and lesions precisely
  • Position your sample ideally for imaging

The perfect finish – publishable results

Functional imaging is one of the most demanding tasks in the laboratory. Leica supports you with fully automated stereo microscopes, like the M205 FA.

Work completely software based and control

  • Fluorescence light, filters, and shutter
  • Transmitted light contrast 
  • x/y/z-positions
  • Camera
  • Magnification
  • Environment

With the fully automated TL5000 Ergo transmitted light base from Leica, functional imaging brings out the best of your fish. It provides highest NA of 0.9 and adjusts the aperture automatically to the zoom, in order to eliminate stray light.

Related articles

Read our latest articles about Zebrafish Research

The knowledge portal of Leica Microsystems offers scientific research and teaching material on the subjects of microscopy. The content is designed to support beginners, experienced practitioners and scientists alike in their everyday work and experiments.

More Articles

Raw widefield and THUNDER image of GFP-tagged zebrafish fin. Courtesy of Jason Ear lab at Cal Poly Pomona, California, USA.

Diseases Linked to Scaffold Proteins and Signaling

This article shows how diseases related to scaffold proteins and protein signaling can be studied in zebrafish models efficiently with a THUNDER Imager.
Zebrafish heart showing the ventricle with an injury in the lower area

Cardiomyocyte Proliferation Upon Heart Injury in Zebrafish

VIDEO ON DEMAND - This edition of MicaCam focuses on the study of the zebrafish (Danio rerio) whose heart cells can fully regenerate after injury.
Wt1b-positive myocardial cell adopting an epicardial cell morphology.

Wt1 Genes Can Induce a Cardiomyocyte to Epicardial-like Cell Fate Transition

From this study, it was concluded that Wt1 plays a yet undescribed role for cardiomyocyte differentiation by repressing chromatin opening at specific genomic loci and that sustained ectopic expression…

Fish and Chips Sheet into the Light

The zebrafish larval brain is small and contains about 1 million times less neurons than the human counterpart. The neural circuitry and the general bauplan of the vertebrate brain, however, is…

Using U-Shaped Glass Capillaries for Sample Mounting

The DLS microscope system from Leica Microsystems is an innovative concept which integrates the Light Sheet Microscopy technology into the confocal platform. Due to its unique optical architecture,…

Real Time Observation of Neutrophil White Blood Cell Recruitment to Bacterial Infection In Vivo

The zebrafish (Danio rerio) is an emerging vertebrate model organism to study infection. The transparent larva comprises a fully functional innate immune system and enables live imaging of fluorescent…

Work More Efficiently in Developmental Biology With Stereo Microscopy: Zebrafish, Medaka, and Xenopus

Among the aquatic model organisms used in molecular and developmental biology the most prominent are the zebrafish (genus species: Danio rerio), medaka or japanese rice fish (genus species: Oryzias…

Organ Regeneration: An Unlikely Fish Tale

Spectacular discoveries in cardiac tissue regeneration are rapidly moving researchers closer to the goal of harnessing regenerative techniques to repair the human heart. Only eleven years ago, Dr.…

Find the Needle in the Haystack

The obvious has been explored. These days, biologists strive to identify and analyze hidden and rare events. The task is tackled by automatically screening large numbers of objects – typically growing…
 Zebrafish embryo expressing the DsRed fluorescent protein under the control of a blood cell specific promoter.

Deep Tissue Imaging

Developmental biology using Multiphoton microscopy with OPO. To gain new insight into the fundamental control of cell response to physical changes and to study the dynamics and roles of biological…

Interested to know more?

Talk to our experts. We are happy to answer all your questions and concerns.

Contact Us

Do you prefer personal consulting? Show local contacts

Scroll to top