ライフサイエンス

ライフサイエンス

ライフサイエンス

様々な科学分野における顕微鏡の知識、研究技術、そして実用的な応用を深めるための場です。正確な観察、画像解析、そして研究の進歩を実現する方法を学びましょう。高度な顕微鏡技術、イメージング技術、サンプル前処理、画像解析に関する専門的な知見を提供します。最先端のアプリケーションやイノベーションを中心に、細胞生物学、神経科学、がん研究などの分野を幅広くカバーしています。

Nobel Prize 2013 in Physiology or Medicine for Discoveries of the Machinery Regulating Vesicle Traffic

On October 7th 2013, The Nobel Assembly at Karolinska Institutet has decided to award The Nobel Prize in Physiology or Medicine 2012 jointly to James E. Rothman, Randy W. Schekman and Thomas C. Südhof…

Thermodynamic Considerations Regarding the LN2 in a High Pressure Freezer

Employing liquid nitrogen (LN2) as a coolant in the complex process of high pressure freezing raises certain considerations regarding phase transition not only of the liquid sample to be frozen but…

Carbon Thickness Evaluation in Electron Microscopy

The coating layers applied and used for electron microscopy imaging are commonly controlled and measured by quartz crystals. These crystals oscillate with a certain frequency (around 6 megahertz when…

Spectral Detection – How to Define the Spectral Bands that Collect Probe-specific Emission

To specifically collect emission from multiple probes, the light is first separated spatially and then passes through a device that defines a spectral band. Classically, this is a common glass-based…
John B. Gurdon

Nobel Prize 2012 in Physiology or Medicine for Stem Cell Research

The Nobel Prize recognizes two scientists who discovered that mature, specialised cells can be reprogrammed to become immature cells capable of developing into all tissues of the body. Their findings…
CARS image of cellulose fibers. The fibers are visualized through the C–H vibrations of the polyglucan chains in cellulose.

CARS Microscopy: Imaging Characteristic Vibrational Contrast of Molecules

Coherent anti-Stokes Raman scattering (CARS) microscopy is a technique that generates images based on the vibrational signatures of molecules. This imaging methods does not require labeling, yet…
Jellyfish Aequorea Victoria

Fluorescent Proteins - From the Beginnings to the Nobel Prize

Fluorescent proteins are the fundament of recent fluorescence microscopy and its modern applications. Their discovery and consequent development was one of the most exciting innovations for life…

Super-Resolution GSDIM Microscopy

The nanoscopic technique GSDIM (ground state depletion microscopy followed by individual molecule return) provides a detailed image of the spatial arrangement of proteins and other biomolecules within…

New Standard in Electrophysiology and Deep Tissue Imaging

The function of nerve and muscle cells relies on ionic currents flowing through ion channels. These ion channels play a major role in cell physiology. One way to investigate ion channels is to use…
Scroll to top