Contact Us

James DeRose , Ph.D.

James DeRose

James DeRose is a scientific and technical writer for stereo and digital microscopy at Leica Microsystems. He has more than 20 years of experience in scientific and technical writing for book and journal publications. He has co-authored more than 35 scientific and technical publications published in international journals, more than 45 presentations for international scientific conferences and symposiums, and 2 patent applications. He is lead editor for the book "Aluminium Alloy Corrosion of Aircraft Structures: Modelling and Simulation" published in 2012. This book resulted from the EU 6th Framework funded project SICOM. He has managed and contributed to scientific and technical projects focusing on applied R&D and applications development in the fields of interfacial chemistry and physics, thermal and chemical engineering, corrosion and metallography, surface coatings and analysis, materials science, biotechnology, and cellular biology. He has expertise with various types of microscopy and analytical methods. In the past, he worked on applied R&D and applications development projects while at the California Institute of Technology, the Swiss Federal Institute of Technology in Lausanne, as well as the company Cytion (Molecular Devices). James obtained a doctorate in physics with applied research emphasis in surface science, physical chemistry, and biophysics in 1993 from Arizona State University. He has worked at Leica Microsystems since August 2013.

Keeping Particulate Contamination Under Control in Pharmaceutical Products

This article describes how a 2-methods-in-1 solution combining optical microscopy and laser induced breakdown spectroscopy (LIBS) can be utilized for identification of particulate contaminants in the…

Fast Visual and Chemical Analysis of Contamination and Underlying Layers

Visual and chemical analysis of contamination on materials with a 2-methods-in-1 solution leading to an efficient, more complete analysis workflow is described in this report. A 2-in-1 solution,…

How does an Automated Rating Solution for Steel Inclusions Work?

The rating of non-metallic inclusions (NMIs) to determine steel quality is critical for many industrial applications. For an efficient and cost-effective steel quality evaluation, an automated NMI…

Perform Microscopy Analysis for Pathology Ergonomically and Efficiently

The main performance features of a microscope which are critical for rapid, ergonomic, and precise microscopic analysis of pathology specimens are described in this article. Microscopic analysis of…

Studying Human Brain Development and Disease

Neural spheroids created from human induced pluripotent stem cells (iPSCs) provide effective and novel tools for studying brain development, as well as the underlying pathological mechanisms of…

Challenges Faced When Manually Rating Non-Metallic Inclusions (NMIs) to Determine Steel Quality

Rapid, accurate, and reliable rating of non-metallic inclusions (NMIs) is instrumental for the determination of steel quality. This article describes the challenges that arise from manual NMI rating,…
Influenca in lung epithelial cells (porcine) - THUNDER Imager 3D Cell Culture Influenca virus – red, cilia – green, Nuclei – blue.

How Can Immunofluorescence Aid Virology Research?

Modern virology research has become as crucial now as ever before due to the global COVID-19 pandemic. There are many powerful technologies and assays that virologists can apply to their research into…

Reasons Why There is Growing Need for Fast and Reliable Steel Quality Rating Solutions

Steel quality is critical for the manufacturing of high-quality components and products. Fast, reliable, and accurate detection and classification of inclusions has become essential for both component…

Depth Profiling and Layer Analysis for Inspection of Materials with a 2-In-1 Solution Combining Optical Microscopy and Laser Spectroscopy

In addition to simultaneous visual and chemical inspection, a 2-methods-in-1 materials analysis solution, which combines optical microscopy and laser induced breakdown spectroscopy (LIBS), can also be…

Top Issues Related to Standards for Rating Non-Metallic Inclusions in Steel

Supplying components and products made of steel to users worldwide can require that a single batch be compliant with multiple steel quality standards. This user demand creates significant challenges…

Visual and Chemical Analysis of Steel Microstructure: Faster Rating of Steel Quality

Simultaneous visual and chemical analysis of steel non-metallic inclusions with a 2-methods-in-1 solution, using optical microscopy and laser induced breakdown spectroscopy (LIBS), is described in…

Rate the Quality of Your Steel: Free Webinar and Report

This webinar and report describe optimal microscopy solutions for rating steel quality in terms of non-metallic inclusions and reviews the various international and regional standards concerning…

Evaluating Axon Regeneration After Brain or Spine Trauma of Mice

Damaged nerve regeneration was investigated using mouse spinal cord sections treated with compounds that counter axon growth inhibitor (AGI) proteins. The sections were screened to find active and…

Metallography – an Introduction

This article gives an overview of metallography and metallic alloy characterization. Different microscopy techniques are used to study the alloy microstructure, i.e., microscale structure of grains,…

Brief Introduction to Surface Metrology

This report briefly discusses several important metrology techniques and standard definitions commonly used to assess the topography of surfaces, also known as surface texture or surface finish. With…

Studying the Microstructure of Natural Polymers in Fine Detail

The potential of cryogenic broad ion beam milling used in combination with scanning electron microscopy (cryo-BIB-SEM) for imaging and analyzing the microstructure of cryogenically stabilized soft…
Ultramicrotomy; ARTOS 3D

Introduction to Ultramicrotomy

When studying samples, to visualize their fine structure with nanometer scale resolution, most often electron microscopy is used. There are 2 types: scanning electron microscopy (SEM) which images the…
Measuring grains size with Abrams Three-Circle Procedure.

How to Adapt Grain Size Analysis of Metallic Alloys to Your Needs

Metallic alloys, such as steel and aluminum, have an important role in a variety of industries, including automotive and transportation. In this report, the importance of grain size analysis for alloy…
Scroll to top