Science Lab

Science Lab

Science Lab

ライカマイクロシステムズのナレッジポータルでは、顕微鏡の基礎から最先端技術まで、幅広い情報を提供しています。初心者から熟練者、研究者、医師の皆様まで、日々の研究や実験に役立つ内容となっております。チュートリアルやアプリケーションノートを活用し、学びながら探究心を刺激してください。さらに、コミュニティに参加することで、知見を共有し、新たな発見へとつなげましょう。お気軽に参加いただき、互いの専門知識を深め合う場としてご活用ください。
Particles which could be found during cleanliness analysis of parts and components.

Cleanliness of Automotive Components and Parts

This article discusses the ISO 16232 standard and VDA 19 guidelines and briefly summarizes the particle analysis methods. They give important criteria for the cleanliness of automotive parts and…
Identification of distinct structures_roundworm_Ascaris_female

Find Relevant Specimen Details from Overviews

Switch from searching image by image to seeing the full overview of samples quickly and identifying the important specimen details instantly with confocal microscopy. Use that knowledge to set up…
Image of fixed U2OS cell expressing mEmerald-Tomm20 denoised using a 3D RCAN model trained with matching low and high SNR image pairs acquired on an iSIM system.

AI Microscopy Image Analysis – An Introduction

Artificial intelligence-guided microscopy image analysis and visualization is a powerful tool for data-driven scientific discovery. AI can help researchers tackle challenging imaging applications,…
Dual color volume rendering of Drp1 oligomers (green) and mito OM (red) in a live U2OS cell

Multicolor 4D Super Resolution Light Sheet Microscopy

The AI Microscopy Symposium offers a unique forum for discussing the latest AI-based technologies and tools in the field of microscopy and biomedical imaging. In this scientific presentation, Yuxuan…
Left-hand image: The distribution of immune cells (white) and blood vessels (pink) in white adipose tissue (image captured using the THUNDER Imager 3D Cell Culture). Right-hand image: The same image after automated analysis using Aivia, with each immune cell color-coded based on its distance to the nearest blood vessel. Image courtesy of Dr. Selina Keppler, Munich, Germany.

Accurately Analyze Fluorescent Widefield Images

The specificity of fluorescence microscopy allows researchers to accurately observe and analyze biological processes and structures quickly and easily, even when using thick or large samples. However,…

The AI-Powered Pixel Classifier

Achieving reproducible results manually requires expertise and is tedious work. But now there is a way to overcome these challenges by speeding up this analysis to extract the real value of the image…

Using Machine Learning in Microscopy Image Analysis

Recent exciting advances in microscopy technologies have led to exponential growth in quality and quantity of image data captured in biomedical research. However, analyzing large and increasingly…

Applying AI and Machine Learning in Microscopy and Image Analysis

Prof. Emma Lundberg is a professor in cell biology proteomics at KTH Royal Institute of Technology, Sweden. She is also the director of the Cell Atlas, an integral part of the Swedish-based Human…
Single timepoint of a drosophilia embryo, 3D object detection

Examining Critical Developmental Events in High-Definition

Extended live cell imaging of embryo development requires a delicate balance between light exposure, temporal resolution and spatial resolution to maintain cells’ viability. Compromises between the…
Scroll to top