Science Lab

Science Lab

Science Lab

ライカマイクロシステムズのナレッジポータルでは、顕微鏡の基礎から最先端技術まで、幅広い情報を提供しています。初心者から熟練者、研究者、医師の皆様まで、日々の研究や実験に役立つ内容となっております。チュートリアルやアプリケーションノートを活用し、学びながら探究心を刺激してください。さらに、コミュニティに参加することで、知見を共有し、新たな発見へとつなげましょう。お気軽に参加いただき、互いの専門知識を深め合う場としてご活用ください。

Visualizing Protein-Protein Interactions by Non-Fitting and Easy FRET-FLIM Approaches

The Webinar with Dr. Sergi Padilla-Parra is about visualizing protein-protein interaction. He gives insight into non-fitting and easy FRET-FLIM approaches.
Living HeLa cells stained with WGA-488 (yellow), SPY-Actin (cyan), and SiR-Tubulin (magenta). Instant Computational Clearing (ICC) was applied.

How to Perform Dynamic Multicolor Time-Lapse Imaging

Live-cell imaging sheds light on diverse cellular events. As many of these events have fast dynamics, the microscope imaging system must be fast enough to record every detail. One major advantage of…
Spectral separation of 11 fluorophores coupled to polystyrene beads on a STELLARIS confocal system.

Multiplexing through Spectral Separation of 11 Colors

Fluorescence microscopy is a fundamental tool for life science research that has evolved and matured together with the development of multicolor labeling strategies in cells tissues and model…
Two-color caspase assay with tile scan. U2OS cells were treated with the nuclear marker DRAQ5 (magenta) and CellEvent™ (yellow).

Following Multiple Events during Staurosporine Apoptosis

In this video on demand, we show how adding additional markers to an apoptosis kit can markedly increase the amount of information a researcher can obtain from the same experiment. The simultaneous…
Image of murine-brain tissue showing a region removed with UV laser microdissection.

RNA Quality after Different Tissue Sample Preparation

The influence of sample preparation and ultraviolet (UV) laser microdissection (UV LMD) on the quality of RNA from murine-brain tissue cryo-sections is described in this article. To obtain good…
Projection of a confocal z-stack. Sum159 cells, human breast cancer cells kindly provided by Ievgeniia Zagoriy, Mahamid Group, EMBL Heidelberg, Germany. Blue–Hoechst - indicates nuclei, Green–MitoTracker mitochondria, and red–Bodipy - lipid droplets

New Imaging Tools for Cryo-Light Microscopy

New cryo-light microscopy techniques like LIGHTNING and TauSense fluorescence lifetime-based tools reveal structures for cryo-electron microscopy.
Transverse histological cut of a rabbit tongue. 50 Mpixels images (2326 µm x 1739 µm) in 14 x 18 tiles. Lifetime gives an additional contrast that allows to differentiate different structures in histological stainings.

A Guide to Fluorescence Lifetime Imaging Microscopy (FLIM)

The fluorescence lifetime is a measure of how long a fluorophore remains on average in its excited state before returning to the ground state by emitting a fluorescence photon.
Untreated Hela Kyoto cells stained to show the nucleus (Hoechst, blue), the cis-golgi matrix protein GM130 (AF488, green), and the trans-golgi network membrane protein TGN46 (AF647, red).

Golgi Organizational Changes in Response to Cell Stress

In this video on demand, our special guest George Galea from EMBL Heidelberg will look at HeLa Kyoto cells treated with various chemotherapeutic agents to investigate their effect on the Golgi complex…
Pancreatic ductal adenocarcinoma tissue section imaged with Cell DIVE

Multiplexed Imaging Types, Benefits and Applications

Multiplexed imaging is an emerging and exciting way to extract information from human tissue samples by visualizing many more biomarkers than traditional microscopy. By observing many biomarkers…
Scroll to top