Science Lab

Science Lab

Science Lab

The knowledge portal of Leica Microsystems offers scientific research and teaching material on the subjects of microscopy. The content is designed to support beginners, experienced practitioners and scientists alike in their everyday work and experiments. Explore interactive tutorials and application notes, discover the basics of microscopy as well as high-end technologies – become part of the Science Lab community and share your expertise!
Chicken cochlea tissue imaged with a THUNDER Imager using large volume computational clearing. Courtesy of Dr. Amanda Janesick, California, USA.

Development and Recovery of the Inner Ear

This article discusses how thick cochlear tissues of chicken embryos can be sharply imaged for studying inner-ear hair cell regeneration. Sensory hair cells perform important functions for hearing and…
Mouse whole-mount retina. Image courtesy of the Experimental Ophthalmology Group, University of Murcia, Spain.

Fast, High Acuity Imaging and AI-assisted Analysis

The use of state-of-the-art AI systems is pushing image analysis into a new generation. Challenges like the conflict between imaging power and sample integrity are being overcome with THUNDER’s…
3D reconstruction of an isolated human islet

Create New Options for Live Cell Imaging

The use of state-of-the-art AI systems is pushing image analysis into a new generation. Challenges like the conflict between imaging power and sample integrity are being overcome with THUNDER’s…
Raw widefield and THUNDER image of a mouse dorsal root ganglion with tdTomato (red) expressed in the sensory neurons.

Fast, High-contrast 3D Imaging of Sensory Neurons

This article discusses how fast, high-contrast 3D imaging of dorsal root ganglion (DRG) tissue with a THUNDER Imager Tissue using large volume computational clearing (LVCC) allows sensory neurons to…
Raw widefield and THUNDER image of a mouse aorta

Molecular Mechanisms of Vascular Disease

This article discusses how the lamina, vascular cells, and nuclei of mouse aorta are more clearly resolved with a THUNDER Imager Tissue using Computational Clearing (CC) compared to conventional…
Left-hand image: The distribution of immune cells (white) and blood vessels (pink) in white adipose tissue (image captured using the THUNDER Imager 3D Cell Culture). Right-hand image: The same image after automated analysis using Aivia, with each immune cell color-coded based on its distance to the nearest blood vessel. Image courtesy of Dr. Selina Keppler, Munich, Germany.

Accurately analyze fluorescent widefield images

The specificity of fluorescence microscopy allows researchers to accurately observe and analyze biological processes and structures quickly and easily, even when using thick or large samples. However,…
Raw widefield (left) and THUNDER (right) image of Ewing Sarcoma cells (SK-ES-1).

Visualizing the Mitotic Spindle in Cancer Cells

This article demonstrates how this research is aided by visualizing more details of mitotic spindles in Ewing Sarcoma cells using the THUNDER Imager Tissue and Large Volume Computational Clearing…
Maximum intensity projection of undecalcified mouse bone tissue expressing GFP (green) and tdTomato (red) and stained with Hoechst 33342 (blue). Imaged using a THUNDER Imager Tissue: A) raw data and B) with ICC.

Localizing Bone Stem Cells In Vivo

This article demonstrates how undecalcified mouse bone samples can be investigated in detail more easily and rapidly with a cryohistological method used in combination with a THUNDER Imager Tissue and…

High-resolution 3D Imaging to Investigate Tissue Ageing

Award-winning researcher Dr. Anjali Kusumbe demonstrates age-related changes in vascular microenvironments through single-cell resolution 3D imaging of young and aged organs.
Scroll to top